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ABSTRACT

This dissertation is focused on the study of spaces called 2-stratifolds. These spaces are locally
modeled on a 2-dimensional space where n-sheets meet. Unlike 2-manifolds, 2-stratifolds are not
determined by their fundamental group and a complete list of 2-stratifold groups is unknown. To
further understand these groups, we determine which finite groups and which abelian groups are
the fundamental group of a 2-stratifold. A powerful tool for studying 2-stratifolds is the associated
labelled bicolored graph. This graph essentially determines the homeomophism type. A classification
of all labelled graphs that represent 1-connected trivalent 2-stratifold had been previously obtained
by Goémez-Larranaga, Gonzalez-Acuna, and Heil in [7]. We extend this classification to labelled

graphs that represent trivalent 2-stratifold with finite fundamental group or abelian fundamental

group.
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CHAPTER 1

INTRODUCTION

A closed 2-stratifold is a compact connected 2-dimensional cell complex X that can be constructed
from a disjoint union of compact connected 2-manifolds W2 and disjoint union X of circles by
attaching each component of W?2 to X via a covering map 1 : 9W?2 — X1 with Y~ (z) > 2 for
z € X Figure 1.1 is an example of this construction. These 2-stratifolds are a generalization of
closed 2-manifolds, as 1-dimensional cell complexes are a generalization of 1-manifolds.

In (3], Eto, Matsuzaki, and Ozawa study the embeddability of 2-dimensional cell complexes into
R? and they introduce multibranched surfaces. Multibranched surfaces are a slightly more general
class of 2-dimensional stratifed spaces than 2-stratifolds. A multibranched surface is constructed as a
2-stratifold except the attaching map ¢ : 9W’ — X is from a subcollection dW' of the components
of OW?2. In [15], Matsuzaki and Ozawa show that all multibranched surfaces embed in R*.

—(—{
—(—(
— () —(

Figure 1.1: An example of a 2-stratifold.

Multibranched surfaces and 2-stratifolds where each point of XM has a neighborhood where
three sheets meet are called tribranched surfaces and trivalent 2-stratifolds respectively. Tribranched

surfaces and trivalent 2-stratifolds are a subclass of 2-foams. A 2-foam is a compact topological space



Y

Figure 1.2: Local picture of a 2-foam.

such that each point has a neighborhood homeomorphic to a neighborhood of the 2-dimensional cell
complex in figure 1.2. Reidemeister /Roseman-type moves of embedded knotted 2-foams in R* have
been studied in [2] by Scott Carter.

In [15], Matsuzaki and Ozawa show that multibranched surfaces are embeddable into an orientable
closed 3-manifold if and only if they the set X (1) satisfies a regularity condition. Then Ishihara, Koda,
Ozawa, and Shimokawa in [11], define a neighborhood equivalence class on embedded multibranched
surfaces and give moves that determine when different embedded multibranched surfaces belong
to the same class. Gomez-Larranaga, Gonzélez-Acuna, and Heil in [9] show which 2-stratifolds are
spines of closed 3-manifolds. Friedl, Kitayama, Nagel show that if M is a closed 3-manifold with
rank 71 (M) > 4 then M admits an essential tribranched surface in [4].

We know by the classification of closed 2-manifolds that closed 2-manifolds are determined
uniquely by their fundamental group. From the classification we are also able to enumerate all the
groups which are the fundamental group of a closed 2-manifold. In comparison, we are unable to
enumerate the groups which are the fundamental group of a 2-stratifold. In fact, there are infinitely
many non-homeomorphic 2-stratifolds that have isomorphic fundamental groups.

The class of groups, 2-stratifold groups, that are realizable as the fundamental group of 2-
stratifolds contains many interesting finitely presented groups. For example the fundamental group
of a compact 2-manifold (with or without boundary) is a 2-stratifold group. Other examples of
2-stratifold groups include free products of cyclic groups, Baumslag-Solitar groups, and F-groups. In
[8], a 2-stratifold group was shown to be isomorphic to the fundamental group of a graph of groups

with vertex groups that are either F-groups or cyclic groups and edge groups that are cyclic groups.



Figure 1.3: Labelled graph of the 2-stratifold in figure 1.1.

We use this graph of groups representation to determine the finite 2-stratifold groups and the abelian

2-stratifold groups. This is the main result of the chapter 2 and is given by the following theorem.

Theorem 3.4.3. Let X be a 2-stratifold.

1. If X has finite fundamental group then m1(X) is finite cyclic, dihedral group of order 2n, or
the tetrahedral, octahedral, dodecahedral group.

2. If X has abelian fundamental group then m(X) is either finite cyclic, dihedral group of order
4, 2, 7 X7, or Z X Ly,

The homeomophism class of a 2-stratifold is determined by a bicoloured labelled graph. For a
2-stratifold X this bicoloured labelled graph I'x has white vertices that correspond to the components
W2, the black vertices that correspond to components of X, and an edge is a component of
W2N XM, where the label on an edge is the degree of the map ¢ : 9W?2 — X1 In [7], Gomez-
Larranaga, Gonzalez- Acuna, and Heil gave a classification of bicoloured labelled graphs that represent
1-connected trivalent 2-stratifolds. Then in [10], they obtain necessary and sufficent conditions on X
and on the graph I'x such that m(X) = Z. They then give a classification of trivalent 2-stratifolds
with fundamental group Z. This classification is in terms of conditions that can be read off the
labelled graph I'x.

In this dissertation, we extend the classification to trivalent 2-stratifolds with finite fundamental
group or abelian fundamental group. For trivalent 2-stratifolds with finite fundamental groups we

first find the trivalent 2-stratifold groups. This is given by the following theorem.



Theorem 5.2.2. Let I' be a bicolored trivalent graph. If Xr has finite fundamental group then

m1(XT) s isomorphic to either Zok+1, Zsyor, Dort1 where k > 0.

The classification of trivalent 2-stratifolds with finite fundamental group follows from theorem
5.2.2. This classification is in terms of conditions that can be read off the labelled graph I'x and is
given by corollaries 5.2.3-5.2.7.

We then give a classification of trivalent 2-stratifold groups with Z x Z and Z X Z,,. Similarly
we find the trivalent 2-stratifold groups that are of the form Z x Z,,. This is given by the following

theorem.

Theorem 6.3.2. Let I' be a bicolored trivalent graph. If m(Xr) = Z X Zy, for m > 1 then
m1(Xr) 2 Z X Lok for k > 0.

The classification of trivalent 2-stratifolds with fundamental group Z X Z, is then given by
theorem 6.3.3 and classification of trivalent 2-stratifolds with fundamental group Z x Z is given by

theorem 6.4.4.

1.1 Outline

The chapter two starts by introducing 2-stratifolds X and how to represent a 2-stratifold with a
bicolored labelled graph I'y. We review how to compute a presentation of the fundamental group of
a 2-stratifold from the graph I'x. Altering the graph I'x changes the homoemorphism type of a
2-stratifold. But certain alterations of the graph I'x changes the fundamental group of a 2-stratifold
in a predictable way. We introduce operations that are used to determine the fundamental group
of X. We then find necessary conditions on I' for when X has finite fundamental group or abelian
fundamental group.

In the third chapter, we study the fundamental groups of 2-stratifolds. The main purpose of this
chapter is to determine the finite 2-stratifold groups and the abelian 2-stratifold groups. To do this
we study the structure of a 2-stratifold group by representing the group as the fundamental group of
a graph of groups. We show that the graph of groups corresponding to a finite 2-stratifold group
collapses to a single vertex and that the graph of groups corresponding to an abelian 2-stratifold

group collapses to either a single vertex or a single vertex along with a single edge.



In chapter four and chapter five we focus on determining which bicolored trivalent graphs I'
represent a trivalent 2-stratifold Xt with finite fundamental group. In chapter 3 we find a set of
necessary conditions on I' so that Xt has finite fundamental group. Then in the first part of chapter
four, we find the finite fundamental groups of Xr where I' satisfies the necessary conditions from
chapter 3. In the second part of chapter four, we give the necessary and sufficient conditions on I" so
that Xt has finite fundamental group.

In chapter six we focus on determining which bicolored trivalent graphs I' represent a trivalent
2-stratifold Xt with abelian fundamental group. We first determine the necessary and sufficient
conditions on a graph I' that represents a trivalent 2-stratifold Xt with fundamental group Z x Zyx.
Then we complete the classification of trivalent 2-stratifolds with abelian fundamental group by

determining when a trivalent 2-stratifold Xt has fundamental group Z x Z.



CHAPTER 2

DEFINITIONS AND PROPERTIES OF
2-STRATIFOLDS

The purpose of this chapter is to introduce the necessary definitions and theorems needed for the
study and classification of trivalent 2-stratifolds.

We will begin by reviewing basic definitions regarding 2-stratifolds X and their associated labelled
graph I'x that were introduced in [5]. This will include the presentation of the fundamental group
arising from the associated graph I'x and operations on I'x that alters the fundamental group in a
controlled manner. The group presentation and the operations appear in [6] and [8].

We then find necessary conditions on I'x for X to have either finite fundamental group or abelian
fundamental group. For a 2-stratifold X with finite fundamental group these conditions are given by
Lemma 2.3.3. For a 2-stratifold X with abelian fundamental group these conditions are given by

Lemma 2.3.5.

2.1 Preliminaries

A 2-stratifold X is a compact, Hausdorff space X that contains a closed (possibly disconnected)
I-manifold XM as a closed subspace with the following property: Each point z € X1 has a
neighborhood homeomorphic to R x CF, where C'F' is the open cone on the finite set F' with
cardinality > 2, and where X \ X! is a (possibly disconnected) 2-manifold.

A component B of X(1) has a regular neighborhood denoted by N(B) = N;(B). The regular
neighborhood N (B) is homeomorphic to the mapping cylinder of f where if 7 is the partition
ni +ng + ...+ n, of d, the map f : B — B is from a closed 1-manifold with components B,
Bs,..., B, and the restriction of f to B; is an n;-fold covering 1 < i < r. The space Ny(B) is
determined by the partition of d.

For a 2-stratifold X there is an associated bipartite graph I'xy embedded in X. For disjoint
components B and B’ of X(!) allow N(B) and N(B') be chosen sufficiently small so that N(B)

and N(B’) are disjoint. The white vertices w; of the graph I'x are the components W; of M =



(a.) (b.)

Figure 2.1: Regular neighborhoods N(B) determined by the partitions 4 + 1 and 5 of 5.

W for all components B; of XM). The black vertices b; of graph T'y correspond to the
regular neighborhood N(B;). An edge is e;; is component of E;; of OM that joins b; and w; if
W; NN (B;) = Ej;.

We label the white vertices w; of graph I'x with the genus of the corresponding surface W;. By
convention, we assign a negative genus ¢ to a nonorientable surface. Each edge of I'x is labeled by
an integer k, where k is the summand of the partition 7 corresponding to the boundary component
E of N(B;).

A presentation of the fundamental group 71 (X) arises from the graph I'y. For a given white
vertex w, the corresponding compact 2-manifold W has oriented boundary curves ci, ..., ¢, with

fundamental group

m(W) ={c1,. .., Y1s-- -, Yn 1 C1...Cpq = 1},

where if I is orientable and genus g = 2n then ¢ = [y1, y2] . .. [y2g—1, y24] and if W is nonorientable
and genus g = —n then ¢ = 3% ... y2.

Let B be the set of black vertices, W the set of white vertices and choose a fixed maximal tree T’
of I'x. We choose orientations of the black vertices and of all boundary components of M such that

all labels of edges in T" are positive. Then 71 (X7) has the presentation with



generators: {b}pep
{c1,...,¢p,y1,. .., Yn}, one set for each w € W
{ti}, one t; for each edge in I'x \ T" between w and b
relations: c¢;...cpq = 1 one for each w € W
b"™ = ¢; for each edge e; € T between w and b with edge label m > 1

t~le;t = bE™ one for each edge e in I'y \ T between w and b with edge label m > 1

Notation 2.1.1. The labelled bipartite graph associated to a 2-stratifold X is denoted by I'x and
X is denoted by Xt. If T is a bipartite labelled tree then there is a unique 2-stratifold X such that
I'x=T.

2.2 Operations on 2-stratifold graphs

For a given bipartite labelled graph I'x there are operations on I'y that produce a bipartite
labelled graph I such that there is an epimorphism (or isomorphism) from 71 (Xr) to m1(Xp/). We
review these operations here.

The following was shown in [6].

Lemma 2.2.1. There is a retraction r : X — I'x such that r—(b) is a singular curve B € X and

r~Y(w) is a 2-manifold W .

Let 'y be a subgraph of I'y and let Y = r~1(I'g). The space Y contains boundary curves
corresponding to St(I'g) — I'g, where St(I'g) is the closed star of I'g in I'x. Denote the labelled edges
of St(T'y) — Ty adjacent to a black vertex of I'y as E. Attach disks with a degree 1 attaching maps
to the boundary curves of Y. The resulting space is a 2-stratifold Y/ = X where I" is obtained
by deleting the complement of I'g U E from 'y then attaching white vertices of genus zero to the
labelled edges of E. We say I is obtained from I' by pruning at I'y.

In Fig.1.2, the graph T’y is the linear graph wg — by — w; — by — wo where the white vertices are

of genus g, go, g4 and the edge labels are mq,n1, mo, no.

Remark 2.2.2. IfTV is obtained from T’ by pruning at T, then there is an epimorphism from m1(Xr)
to m (XF’)'



Figure 2.2: Pruning I'x at I'g results in I

A linear bipartite labelled graph L with successive vertices wg — by —wy — ... — b, —w,., successive
labels my,n1,...,my,n, where m; (resp. n;) is the label of the edge joining b; to w;—1 (resp. w;)
for r =1,...,r will be denoted by L = L(mi,ny,...,my,n,). A linear bipartite labelled graph L
with successive vertices by — wy — ... — b, — w, and successive labels nq, ..., m;,n, will be denoted
by L = L(ny,...,my,n;). A linear subgraph L(mq,n1,...,m;,n,) of 'x (resp. L(ni,...,my,n;))
will be called terminal if w, is a terminal vertex of I' and vertices b;, w; for i > 0 (resp. b1, w; for

i > 0) are of degree < 3.

ny...ny
ni mo Nr—1__ My Ny
LN ] . /\ . O % }—@

Figure 2.3: L-pruning L(nq,...,m;,n,) from I'x

C

Let L = L(my,n1,...,m;,n,) be a terminal linear subgraph of I" where the initial vertex wq has

genus g and all other white vertices in L have genus 0. Let L(1,n;...n,) be a linear graph whose



initial vertex has genus g while all other vertices have genus 0. L-pruning I at L(my,ni,...,my,n,)
is the process of replacing L(my,n1,...,my,n,) with L(1,ny...n,). Let L(ny,...,my,n,) be a
terminal linear subgraph of I' where all white vertices in L have genus 0. The process of replacing

L(ny,...,mp,n,) with L(ny ...n,) will also be called L-pruning I" at L(nq,...,m,,n,).

Lemma 2.2.3. Let X be a 2-stratifold.

1. Let L = L(my,n1,...,my,n,) be a terminal linear subgraph of I'x where the initial vertex wq
has genus g and all other white vertices in L have genus 0. Let T be obtained from T'x by
L-pruning T'x at L(my,ni,...,my,n;).

If ged(mi,nj) =1 for 1 <i < j <1 then m(Xr) = m (Xp).

2. Let L(nq,...,my,n,) be a terminal linear subgraph of T'x where all white vertices in L have

genus 0. Let T be obtained from TUx by L-pruning T'x at L(ny,...,m.,n.).
If ged(mi,nj) =1 for 1 <i < j <r then m(Xr) = m (X)) .

Proof. (1.) This was shown in [6].

(2.) Let the terminal linear subgraph L(ni,...,m;,n,) of I'x have vertices ordered as by —wy —
by — ... — b, —w, where w, is a terminal vertex of I'x and successive edge labels are n; —...—m, — n,.
Let S be the subgraph of L(ni,...,m,,n,) with initial vertex w; and terminal vertex w,. L-prune

the graph I'y at S. In the resulting graph I'”; the terminal linear graph L(nq,...,m,,n,) of I'y has
been replaced by the terminal linear subgraph L(ni,1,n2...n,). Let the terminal linear subgraph
L(ni,1,ng...n,) of I have vertices order as by — w} — b — w4 where w4 is the terminal vertex of
I'”. The fundamental group 71 (Xr) is isomorphic to 71 (Xr~) by part (1.) of this Lemma.

Let I be obtained from I'x by L-pruning the graph I'x at L(n,..., my,n,). Let the terminal
linear subgraph L(ning...n,) of IV have vertices b — w] where w} is a terminal vertex of I".

Let G be obtained from I'x by deleting the graph —w; — by — ... — b, — w,.. Let the generators of
7m1(X¢) be denoted G and the relations of w1 (X¢) be denoted R.

If by, by are generators of 7 (Xt~) corresponding to the curves r~1(by) and r~1(b4) for vertices

by and b3 in I then the presentation of w1 (Xpr) is

{g7b2‘R7 b?l = bz, b7212"'"7” —_ 1}
Removing the generator by from the presentation of 71 (Xpn~) results in

{GIR, bpmamr 1},

10



This presentation is equivalent to the presentation of 71 (Xy/). Then 7 (Xr) = m1(Xp/).

O

Let b be black vertex of I'x that is the initial vertex of k > 1 terminal linear branches L;(n;).
For all ¢, let L;(n;) have a white vertex of genus 0. Reducing the degree of b is the process of

replacing the terminal linear branches L;(n;) of I'x with a single terminal linear branch L(n’).

ng a n'

np

Figure 2.4: Reducing degree of a black vertex.

Lemma 2.2.4. Let X be a 2-stratifold whose graph I'x contains black vertex b that is the initial
vertex of k > 1 terminal linear branches Li(n;) such that the white vertex of L;(n;) has genus 0. Let
I be obtained from T'x by reducing the degree of b.

If n' = ged(ng, ... ,ng) then m(X) = m(X).

Proof. Let G be obtained from I'x by deleting the U;(L; \ b) for all 1 <i < k. Let the generators
of m1(X¢) be denoted G and the relations of m;(X¢) be denoted R and let b be the generator of
71(XT) corresponding to the curve r~1(b).

Suppose that £ = 2. Then the presentation of m (Xr) is

{GIR, b™, b2}

This presentation is equivalent to

{gIR, v™}

where m = ged(ny,na). Then 71 (Xr) = w1 (Xp).
Suppose that k£ > 2. Then the presentation of m (Xr) is

11



(GIR, b™, ... b}

The presentation is equivalent to

{GIR, b",b™}.
where m = ged(nsz ..., ng). This presentation is equal to
{GIR, v},
where m’ = ged(ni,m). Since ged is associative we have m’ = ged(ny, ..., n,). Then m1(X) &

7T1(XF/)

2.3 Graphs of 2-stratifolds with finite or abelian fundamental
group

In this section we find some necessary conditions on I'x for 71 (X)) to be either a finite group or
an abelian group. The following lemma was shown in [10]. We denote the closed surface of genus g
to be S,. Note that since a black vertex of I' corresponds to a singular curve of X, a terminal edge
of I incident to a black vertex has label > 3.

Lemma 2.3.1. Let X be 2-stratifold with graph I'x.

1. If I'x has two black terminal vertices with incident edge labels m,n > 3, then there is an

epimorphism 71 (X) — Zpy, * Ln,.

2. If 'x has a black terminal vertex with with incident edge label m > 3 and contains a white

vertex of genus g then then there is an epimorphism m(X) — Zpy * m1(Sg).

3. If T'x contains two white vertices of genera g1, ga then then there is an epimorphism m(X) —

L (Sgl) * T (Sg2)'

Lemma 2.3.2. Let X be 2-stratifold with graph I'x.
1. If m(X) s finite then T'x is a tree.

2. If m1(X) is abelian then Ty is a tree or homotopy equivalent to S*.

12



Proof. The retraction 7 : X — I'x induces an epimorphism 7, : m(X) — m(I'x). O
From these lemmas we can conclude the following.

Lemma 2.3.3. Let X be 2-stratifold with graph T'x. If m1(X) is finite then T'x is a tree that satifies
one of the following set of conditions:

1. T'x has all white vertices of genus 0, one black terminal vertex and all other terminal vertices

are white.

2. I'x has at most one white vertex of genus —1 while all other white vertices are genus 0, and

all termanal vertices are white.

Proof. By Lemma 2.3.2, I'x is a tree. If w is a white vertex of I'x then pruning I'x at w results in
a closed 2-manifold W’ with finite fundamental group. The 2-manifold W’ is either a 2-sphere or
real projective plane.

By Lemma 2.3.1, I'x contains at most one white vertex of genus —1 or one black terminal vertex.

If I'x contains one black terminal vertex then all other terminal vertices are white and all white
vertices are genus zero by Lemma 2.3.1.

If T'x contains a white vertex of genus —1 then all other white vertices are genus zero and all

terminal vertices are white by Lemma 2.3.1. O
The following lemma was also shown in [10].

Lemma 2.3.4. Let X be 2-stratifold with graph I'x that is homotopy equivalent to S'.

1. If T'x has a black terminal vertex then there is an epimorphism w1 (X) — Z x Z, for some
n > 3.

2. IfT'x contains a white vertex of genus g then then there is an epimorphism w1 (X) — Z % m1(Sy).

For a 2-stratifold X with abelian fundamental group we can conclude the following necessary

conditions on I'x.

Lemma 2.3.5. Let X be 2-stratifold with graph U'x. If m1(X) is abelian then I'x is satifies one of

the following set of conditions:

1. T'x is homotopy equivalent to S, all white vertices are genus 0, and all terminal vertices are

white.
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2. T'x is a tree, all white vertices of genus 0, and contains at most one black terminal vertex while

all other terminal vertices are white.

3. I'x is a tree, all terminal vertices are white, and all but at most one white vertex is of genus 0.

At most one white vertez is of genus 1 or —1.

Proof. By Lemma 2.3.2, I'x is a tree or homotopy equivalent to S*.

By Lemma 2.3.4, If I'x is homotopy equivalent to S' then all white vertices are genus 0 and all
terminal vertices are white.

Assume that 'y is a tree. If w is a white vertex of I'x then pruning I'x at w results in a
closed 2-manifold W’ with abelian fundamental group. The 2-manifold W' is either a 2-sphere, real
projective plane, or a torus. By Lemma 2.3.1, I'x contains at most one black terminal vertex or one
white vertex of genus g = £1.

If I'x contains one black terminal vertex then all other terminal vertices are white and all white
vertices are genus zero by Lemma 2.3.1.

If I'x contains a white vertex of genus g £ 1 then all other white vertices are genus zero and all

terminal vertices are white by Lemma 2.3.1. 0l
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CHAPTER 3

2-STRATIFOLD GROUPS

A group G is called a 2-stratifold group if G = 71(X) for a 2-stratifold X. The goal of this chapter
is to determine what finite groups and what abelian groups are 2-stratifold groups. All groups in
this chapter are assumed to be finitely presented.

We first introduce the graph of groups and analyze graph of groups whose fundamental group is
finite or abelian. Then we will represent 71 (X) as the fundamental group of a graph of groups, as in
[8], to show the following.

Theorem 3.4.3. Let X be a 2-stratifold.

1. If X has finite fundamental group then m(X) is finite cyclic, dihedral group of order 2n, or
the tetrahedral, octahedral, dodecahedral groups.

2. If X has abelian fundamental group then m1(X) is either finite cyclic, dihedral group of order
4, 7, 7 X 7L, or Z X L.

3.1 Graph of groups

We recall some related terminology and properties of graph of groups. We then determine the
reduced graph of groups for graph of groups whose fundamental group is either finite or abelian.

An abstract graph Y consists of two sets: V = V(Y), vertices, and F = E(Y), (oriented)
edges, together with maps E — V x V| e — (o(e), t(e)) (the originating and terminal vertices of e),
and £ — E, e — ¢ (reversal of orientation) such that e = ¢, e # €, t(e) = o(€), and o(e) = t(€). A
graph of groups (G,Y’) consists of an abstract graph Y, two families of groups {G,|v € V(Y)},
{Gele € E(Y)} such that G, = Gg, and a family of monomorphisms {f.} with f. : G. — Gi(e)s
Je: Ge — Go(e)-

For a graph of groups (G, Y'), the group F(G,Y) is generated by the vertex groups G, and elements
e corresponding to the elements of E(Y), subject to the relations € = e~! and ef.(z)e™! = fs(z) for

all x € G, and for each e € E(Y). For a fixed vertex vp, the fundamental group (G, Y, v9) of
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the graph of groups (G,Y) is the subgroup of F/(G,Y) generated by all words
W = Tp€1Tr1€2 ...y

where vg — v] — vy — ... — v, is an edge path with initial and terminal vertex vy = v, (i.e. a cycle
based at vp), successive edges e; (joining v;—1 to v;) and r; € G,,. The word w = rgey ...enr,
of length n is reduced, if for n = 0, ro # 1; for n > 1, 7; € fe(Ge,), for each index i such that
ei+1 = €;. The group 71 (G, Y, vp) is independent of the choice of vy.

Serre showed the following in [17]

Lemma 3.1.1. If w € m(G,Y,v) is a reduced word then w # 1 in m(G,Y,v0). If (G,Y) is a

graph of groups, the homomorphism G, — w1 (G,Y,vg) is injective.

A subgraph of subgroups (G',Y”’) of (G,Y) is a graph of groups where Y’ is a connected
subgraph of Y, G, < G,, for all v in Y”, and for all e € E(Y”), G|, < G and f = fe|ar.

Bass proved the next lemma in [1] (pgs. 10, 24).

Lemma 3.1.2. If (G',Y") is a subgraph of groups of (G,Y), then the natural homomorphism

i 2 m (G Y vg) — m (G, Y vg) is injective.

For a graph of groups (G,Y’) where Y contains one edge {e, &} the fundamental group 1 (G, Y, vg)
is called a free product with amalgamation, denoted G, *¢, G4,, if Y contains two vertices vy, v1
and an HNN group, denoted G,,*q,, if Y contains a single vertex vg. The HNN group, Gy, *q,, will

also be referred to as an HNN extension of G, along G..

Corollary 3.1.3. Let (G,Y) be a graph of groups where G = m1(G,Y,vg). Let Y contain one edge
{e,é}.

1. If o(e) # t(e), fe, fe are not surjective, and Gy, Gy are nontrivial then G is not finite and

not abelian.

2. Let o(e) = t(e) and G,y are nontrivial. If fe(Ge), fe(Ge) are proper subgroups of G then

G is not abelian.

Proof. We write fe, fe as inclusions so that G. < Gy, Ge < Gy, .
(1.) Let vg = o(e) and v; = t(e). Let (H, X) be a subgraph of subgroups (G,Y’) where H, = G,

for all v € V(X), Ho = G, for all e € E(X), and X consists of two vertices vg,v; and a single
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edge {e,e}. The fundamental group 71 (H, X,vg) = N is a subgroup of G. The group N is the free
product with amalgamation G, *g, G»,. There exists a € G, and b € GG;, such that a € G¢ and
b ¢ G.. The word (ab)* is a reduced word in N for all £ and by lemma 3.1.1 (ab)* # 1 in N. The
word ab has infinite order. The word aba~'b~! is a reduced word in N and aba='b~! # 1 in N.

(2.) Let vg = o(e) and let (H, X) be a subgraph of subgroups (G,Y’) where H, = G, for all
veV(X), H. =G, for all e € E(X), and X consists of a single vertex vy and a single edge {e, €}.
The fundamental group 71 (H, X,v9) = N is a subgroup of G. The group N is the HNN group
Goo*a.- If Ge UGz # G, there exists a € Gy, such that a € G, and a ¢ Ge. The word ata='t ! is
a reduced word in N. Suppose that G.UGe = Gy,. Let a € G, such that a ¢ G.NGe. Then a ¢ Ge.
(We can find such an a since if G N Gz = Gy, then G. = G, but G.,G¢ are proper subgroups.) We
claim that ata='t~! is a reduced word. If ata='t~! = 1 then for the subword ta~'¢t~! the element
a~! is contained in Gg. If a=! € G then a € Gz. But a € Gz. Therefore ata='t~! is a reduced
word.

O

Remark 3.1.4. A necessary requirement for the fundamental group m (G, Y, vo) of (G,Y) where Y
is a vertex v, an edge e, and o(e) = t(e) to be abelian is that at least one of fe(Ge), f(Ge) is not a
proper subgroup. The images fe(Ge) and fz(G.) are isomorphic to each other (as groups). Hence if
m1(G, Y, vg) is abelian then fo(Ge) and fz(Ge) are isomorphic to G,. Corollary 3.1.3 does not imply
the stronger condition that at least one of the maps f., fz are isomorphisms. But this follows from a

similiar proof to (2.).

An edge e of a graph of groups (G,Y) is said to be trivial if o(e) # t(e) and f is an isomorphism.
An edge e of a graph of groups (G,Y’) where Gy) = {0} and o(e) # t(e) is trivial by this definition.
Collapsing a trivial edge e of a graph of groups (G,Y) is the process constructing a new graph
of groups (G',Y") where Y’ is obtained from Y by contracting {e, €} to a point E, set G := G,
and G’ = G on all remaining edges and vertices. The fundamental group of (G’,Y”) is isomorphic to
the fundamental group of (G,Y’). A graph of groups with no trivial edge is said to be reduced.

Let Y be an abstract graph. The realization of Y is the topological graph Y with vertices v(Y")

and edges corresponding to the edges {e,ée}.

Lemma 3.1.5. Let (G,Y) be a graph of groups with a finite graph Y .

17



Figure 3.1: Collapsing a trivial edge.

1. If (G,Y) is a graph of groups where w1 (G,Y,vo) is finite then m (G,Y,v9) = m (G, Y, v)
such that (G',Y") is a reduced graph of groups where the graph Y’ is a vertex v}, with no edges
and the vertex group Gy, of (G',Y") is isomorphic to a vertex group G, of (G,Y).

2. If (G,Y) is a graph of groups where m1(G,Y,vg) is abelian then 1 (G,Y,vo) = w1 (G, Y, vp)
such that (G',Y") is a reduced graph of groups where the graph Y’ is vertex v{, with no edges or

a vertex v, with a single edge e and the vertex group Gvé of (G',Y") is isomorphic to a vertex
group Gy, of (G,Y).

Proof. Let Y be the realization of Y. For any graph of groups (G, Y") there is a surjective homomor-
phism 71 (G, Y, vg) = w1 (Y, vg) where 7m1(Y,vp) is the fundamental group of the graph Y. If (G,Y)
is a graph of groups where 71 (G, Y, vp) is finite then Y is a tree. If (G,Y’) is a graph of groups where
71(G,Y,vp) is abelian then Y is a tree or homotopy equivalent to S*.

(1.) For a graph of groups (G,Y’) where the graph Y contains a single vertex, the graph Y must
contain no edges by the previous paragraph.

Otherwise, by induction, we assume that for a graph of groups (G,Y’) where 71 (G, Y, vp) is finite
and Y contains n — 1 vertices then 71 (G,Y, vg) = m1(G’,Y’,v))) where (G,Y’) is a reduced graph of
groups such that Y’ is a vertex v{, and the vertex group Gy of (G',Y") is isomorphic to a vertex
group G,, of (G,Y).

Suppose that (G,Y) is a graph of groups where m (G, Y, vg) is finite and Y contains n vertices.
Let (H, X) be a subgraph of subgroups (G,Y) where H, = G, for all v € V(X), H, = G, for all
e € E(X), and X consists of two vertices vy, v2 and a single edge {e} incident to vy, ve. Let v1 = o(e)

and vo = t(e). If {e, e} are nontrivial edges in (G,Y), then the fundamental group m (H, X,v;) is
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Gy, *G, Gy, which is infinite by corollary 3.1.3. But 71 (H, X, v;) is a subgroup of 71 (G, Y, v1) and
every subgroup of a finite group is finite. At least one edge €’ of {e, €} is trivial in (G,Y). Let
(G",Y") be the graph of groups obtained by collapsing the trivial edge e’ of the graph of groups
(G,Y). In (G",Y’), Y’ contains n — 1 vertices.

(2.) For (G,Y) where 71 (G, Y, vp) is abelian, we proceed similarly. For a graph Y with a single
vertex, the graph Y contains either no edges or one edge by the initial paragraph.

We assume that if Y contains n — 1 vertices then m1(G, Y, vg) = m1(G',Y’,v}) such that (G',Y”)
is a reduced graph of groups where the graph Y’ is v{, vertex with no edges or a vertex vj, with a
single edge and the vertex group G, of (G',Y") is isomorphic to a vertex group Gy, of (G,Y).

Suppose that (G,Y) is a graph of groups where m1 (G, Y, vp) is abelian and Y contains n vertices.
Let (H,X) be a subgraph of subgroups (G,Y’) where H, = G, for all v € V(X), H. = G, for all
e € e(X), and X consists of two vertices v, v2 and a single edge e incident to vy, vy. Let v1 = o(e)
and vo = t(e). If {e, €} are nontrivial edges in (G,Y), then the fundamental group m (H, X, v;) is
Gy, *G, Gy, which is nonabelian by corollary 3.1.3. But m(H, X, v1) is a subgroup of 71 (G, Y, v1)
and every subgroup of an abelian group is abelian. At least one edge €’ of {e, e} is trivial in (G,Y).
Let (G, Y”) be the graph of groups obtained by collapsing the trivial edge €’ of the graph of groups
(G,Y). In (G",Y’), Y’ contains n — 1 vertices.

Corollary 3.1.6. Let (G,Y) be a graph of groups with a finite graph'Y .
1. If m(G,Y,vg) is finite then w1 (G,Y,vg) is isomorphic to a vertex group G, of (G,Y).

2. If 11 (G, Y, vy) is abelian then w1 (G, Y, vg) is either isomorphic to G, or is isomorphic to Gyxq,
where Gy, is a vertex group of (G,Y) and Ge is isomorphic to G,.

Proof. (1.) If m1(G,Y,vp) is finite then 71 (G, Y, v9) = 71 (G’, Y, v() such that (G',Y”) is a reduced
graph of groups where the graph Y’ is a vertex v, with no edges. The group m1(G’, Y’ v() is
isomorphic to G,y and G is isomorphic to a vertex group Gy of (G,Y).

(2.) If m1(G,Y,v9) is abelian then 7 (G, Y,vo) = 71 (G', Y, v() such that (G',Y”) is a reduced
graph of groups where the graph Y’ is a vertex v{, with no edges or the graph Y is a vertex v,
with an edge e. The group m(G’,Y”, vp) is isomorphic to G,y or Gy *¢,. The vertex group G, is

isomorphic to a vertex group G, of (G,Y).
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Suppose that G is nontrivial. By Corollary 3.1.3, If the graph Y’ is a vertex vj with an edge e
and fe(Ge), fz(Ge) are proper subgroups then the group Gy *G, is nonabelian. Therefore the edge
group G is isomorphic to G . If G is trivial then mi(G',Y”, vp) is isomorphic to {0} or {(}x(p).

O

3.2 Graph of groups of m(X)

A natural way of associating a graph of groups (G,Y') to 71 (Xr) was given in [9], such that
m1(G, Y, vp) is isomorphic to 71 (Xr). We review this construction since we are going to need it to
determine the finite 2-stratifold groups and abelian 2-stratifold groups.

For a black vertex b representing a singular oriented circle Cj, let o(b) be the order of Cj in
m1(Xr). Note that, if e is an edge joining a black vertex b to a white vertex w and the label of e is
m, then e represents an oriented circle ¢ of 9W whose order in m (Xr) is k£ = o(b)/(0(b), m). Here
(o(b), m) denotes the greatest common divisor of o(b) and m. (If o(b) = 0, then (o(b), m) = m).

Construct a space X from X by attaching disks as follows: If b has finite order o(b) then attach
a 2-cell dj, to Cp such that dp is attached by a map of degree o(b). If e is an edge joining b to w with
label m and o(b) > 1, attach to ¢ a 2-cell d. with degree k = o(b)/(o(b), m). (If o(b) = 0, do not
attach 2-cells).

The group m (X) isomorphic to m (Xr). The graph of spaces associated to X has the same
underlying graph as I'x with vertices X, Xu, and edges X,, defined as follows:

X,: For a black vertex b of I'x, X, = N(Cy) Udy U (de), where e runs over the edges having b as
an endpoint.

X,: For a white vertex w of I'yx, Xy = W U (de), where e runs over the edges incident to w.

X,: For an edge e joining b to w, X, = (X'b N X’w).

The spaces X3, X, and X, are path-connected and the inclusion-induced homomorphisms
m1(Xe) = m(Xp) and m(Xe) — m1(Xyw) are injective. This graph of spaces determines a graph of
groups (G,Y) where Y = I'x such that Y is the realization of Y. The graph Y is a bipartite graph
which is induced by I'x. The vertex groups are G, = m (X'b) and G, = m (X'w), the edge groups

A~

are G, = m(Xe), the monomorphisms G, — G} (resp. G, — G,,) are induced by inclusion. Then

Fl(G,KU()) = 7['1(X).
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The groups Gy of the black vertices and the groups G, of the edges are cyclic. The groups G,, of

the white vertices with edges eq,...,e, labelled my, ..., m, have the following presentation,

Gw=A{c1,...,cp,y1,.. . yn:c1...cpq=1, ", ... (r <p)},

where p,n > 0 and ¢ = [y1,2] - .- [Y2g9-1,Y24) OF ¢ = 3. ..yg. If a group G has a presentation

given by G,, where all m; > 2 and r = p then G is an F-group. If G has a presentation given by
Gy and n = 0 such that p = 2, 1 <7 < p and m; > 2 then G can be written as a finite cyclic
group. Otherwise G, is a free product of cyclic groups or is isomorphic to the fundamental group of

(p — r)-punctured surface of genus +g.

3.3 [F-groups

We will now review the finite F-groups. Then we will show that an abelian F-group is either
finite cyclic, the dihedral group of order 4, or Z x Z.
Consider F to be an F-group as above. The finite F-groups are determined in [13].

Lemma 3.3.1. The group F is finite cyclic if and only if n =0 andp <2 orn=1and p < 1.
The group F is finite non-cyclic if and only if n = 0, p = 3, and (my1, m2,m3) is either (2,2, m)
with m > 2 (dihedral group of order 2m) or (2,3,k) with 3 < k <5 (the tetrahedral, octahedral,

dodecahedral groups).

We now determine the abelian F-groups.

It follows from [14] (pgs. 68, 71, 86.) that if n = 0, p = 3, and m; > 2 then F is an index 2
subgroup of the triangle group T'(m1,mg, ms). If mil + mLQ + mi3 > 1 then F is finite non-cyclic group
as in the previous lemma. If mil + ng + m%,, < 1 then F is finite index subgroup of a hyperbolic
triangle group. Hyperbolic triangle groups are fuchsian groups. Hence F is a noncyclic fuchsian

1

group. By [12], all abelian fuchsian groups are cyclic. If T mLQ + m%% = 1 then (my, mg, ms) is

(2,3,6), (2,4,4), or (3,3,3) and the group F is infinite. The presentation of F which is

m m s
{61762703 - C1CC3 = 17 Cq 1702 2703 3}7

can be rewritten as
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{c1 e 0 "5, (c1e2)™ .

If N is the commuter subgroup of F then the group F/N has the presentation

{er,e0 0 ™ ey, (cre2)™2, [e1, )}

which can be rewritten as

{c1,c2 0 ™, e, ey, [e1, ea] )

Therefore F/N is either Zy X Zs3, Zo X Zy, or Zs x Zs. We conclude that if n = 0, p = 3, and
m; > 2 and F is abelian then F is the dihedral group of order 4.

If n =0, p> 3, and m; > 2 then F surjects onto an F-group where n = 0, p = 3. Then we
assume that m; = 2 for all ¢ otherwise F surjects onto a nonabelian F-group. Further assume p = 4,
since if p > 4 and m; = 2 for all ¢ then F surjects onto an F-group where p = 4 and m; = 2. The
group F is infinite. If N is the commuter subgroup of F then F/N is Zg + Zg + Zs. In this case, if
n =20, p > 3 then F is not abelian.

If n > 1 and p > 1 then F is a free product of {c1,...,cp[c!™,...,¢cp"} and {y1,...,yn}
amalgamated along the infinite cyclic subgroup < ¢;...¢c, = g~ ! > . For n > 2, the group F contains
a nonabelian surface group. If n = 2 and p = 1 then F has the presentation {y1,y2|(¢)™ }. If
q = [y1,y2] then ylygyflygl is nontrivial. If ¢ = y?y2 then F surjects onto the fundamental group
of a klein bottle. If n =2 and p = 0 then G is either the fundamental group of the 2-torus or the
klein bottle. We conclude that if n > 1 and F is abelian that n =2, p =0 and F is Z x Z.

Lemma 3.3.2. The group F is a finite abelian group if and onlyn =0 andp <2, n=1andp <1,
orn =0, p=3, and (m1,ma,m3) is (2,2,2). The group G is a infinite abelian group if and only if

n=2,p=0, and q = [y1,y2).

3.4 Finite 2-stratifold and Abelian 2-stratifold groups

In this section we will determine the finite 2-stratifold groups and abelian 2-stratifold groups.

Before that we will study whether certain HNN groups are abelian.
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First we determine the abelian groups that admit a presentation given by G,,. Consider G to
be group with presentation G,,. If 1 <r < p and m; < 2 then G is isomorphic to the fundamental
group of (p — r)-punctured surface of genus +g. For n > 2, the group G surjects onto a nonabelian
surface group. If n =2 where p > 2, 1 <7 < p and m; > 2 then G is a free product of cyclic groups.
Suppose that n < 2. If n = 1 such that p > 2, 1 <r < p and m; > 2 then G is a nontrivial free
product of cyclic groups. If n = 0 such that p > 2, 1 <r < p and m; > 2 then G is a nontrivial free
product of cyclic groups. If n = 0 such that p =2, 1 <r < p and m; > 2 then G is finite cyclic.
Therefore if G is abelian and not an F-group then G is infinite cyclic. We note that G is possibly the
trivial group {0}.

From the previous paragraph along with Lemma 3.3.1 and Lemma 3.3.2 we note the following.

Remark 3.4.1. If G is finite (nontrivial) then G is finite cyclic, dihedral group of order 2n or either
the tetrahedral, octahedral, dodecahedral group. If G is abelian (nontrivial) then G is either cyclic,
dihedral group of order 4, or 7 x 7.
Lemma 3.4.2. Let H be a cyclic subgroup of G.

1. If G is infinite cyclic and G*g s abelian then Gk is isomorphic to 7 X 7.

2. If G is finite cyclic and G*g is abelian then Gk is isomorphic to Z X Zy, for n > 2.

3. If G is Z X Z then Gxg is nonabelian.

4. If G is Zo X Zo then Gxpg is nonabelian.
Proof. If H is trivial then the HNN group G is a free product of an infinite cyclic group and G.
We assume that H is a nontrivial cyclic subgroup.

(1.) The HNN group Gxp is the Baumslag-Solitar group BS(n,m). The group BS(n,m) is
abelian if and only if n =m = 1.

(2.) By Corollary 3.1.3, if H is a proper subgroup of G then the HNN group G is nonabelian.
Suppose that H = G and G =< a|a* >. The HNN group Gy has the presentation

< a,tla® ta™ ™t = a" >

where gcd(k,m) =1 and ged(k,n) = 1. This presentation is equivalent to

23



<a,tld® tat™' =a" >

where ged(k,r) = 1 (and r may possibly 1). We assume that r is reduced mod k (i.e. 1 <7 < k).
If k = 2 then Gy is abelian. Suppose that & > 2 and r # 1. Then the word tat~'a=! = a1,

1'is nontrivial. If

The word a”~! # 1 since (r — 1) mod k is not congruent to k. The word tat ‘a~
k>2and r #1 mod k then Gxg is not abelian. Therefore if G,z is abelian and k > 2 then r =1
mod k and Gxp is isomorphic to Z x Zg.

(3.) All cyclic subgroups of Z x Z are proper. By Corollary 3.1.3, the HNN group Gy is
nonabelian.

(4.) All cyclic subgroups of Zy x Zg are proper. By Corollary 3.1.3, the HNN group Gxp is

nonabelian.

The HNN group {}xpy of {#} is Z. We now prove the main theorem of the section.

Theorem 3.4.3. Let X be a 2-stratifold.

1. If X has finite fundamental group then m1(X) is either trivial, finite cyclic, dihedral group of

order 2n, or the tetrahedral, octahedral, dodecahedral groups.

2. If X has abelian fundamental group then m(X) is either trivial, cyclic, Zo X Lo, Z X 7, or
7o X Ly, .

Proof. Suppose that (G,Y) is the associated graph of groups to m1(Xr) such that m (G,Y,v9) =
m1(X1).

(1.) If (G,Y) is a graph of groups where 71 (G, Y, vg) is finite then Y is a tree, all vertex groups
G, and all edge groups G, are finite. The vertex groups G, of (G,Y) are finite F-groups. The
vertex groups Gp and edge groups G, of (G,Y) are finite cyclic groups.

By corollary 3.1.6, m1 (G, Y, vg) is isomorphic to a vertex group of (G,Y"). Therefore m1(G,Y, vg)
is isomorphic to either the trivial group or a finite F-group.

(2.) If (G,Y) is a graph of groups where 71 (G, Y, vp) is abelian then Y is a tree or homotopy
equivalent to S', all vertex groups G, and all edge groups G, are abelian. By remark 3.4.1, the
vertex groups G, of (G,Y) are either cyclic, Zs X Zgy, or Z x Z. The vertex groups G} and edge
groups G, of (G,Y) are cyclic groups.
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Suppose that Y is a tree. By corollary 3.1.6, 71 (G, Y, vp) is isomorphic to a vertex group of
(G,Y). Therefore 71 (G,Y,vp) is either the trivial group or is isomorphic to a cyclic group, Zg X Za,
or Z x Z.

Suppose that Y is homotopy equivalent to S'. By corollary 3.1.6, 71 (G, Y, vg) is isomorphic to
Gy*g, where G, is a vertex group of (G,Y’). The only vertex groups of (G,Y) that are isomorphic
to edge groups are cyclic groups. Therefore m1(G, Y, vg) is isomorphic to {0} (0} s Zn*z,, or Lxz.
The HNN group {(Z)}*{@} is Z. By Lemma 3.4.2, If Z, 7, and Zxz are abelian then Z,xy = Z X Z,
and Zxy, = 7 x Z. Therefore 7 (G, Y, vp) is isomorphic to either Z, Z x Z,,, or Z X Z.

O

Let X be a 2-stratifold. If 7r1(X) is finite then necessary conditions on I'y are given by Lemma
2.3.3. In [10], the necessary conditions on I'x so that 71 (X) = Z is given by Proposition 3 (pg. 6).
We find further necessary conditions for I'x if 71 (X)) is isomorphic to either Z x Z,, or Z X Z.

Before we find the further necessary conditions for I'y, we recall the following Lemma which was

shown in [10].
Lemma 3.4.4. Let X be a 2-stratifold where I'x is a tree.

1. If 'x has at most one black terminal vertex and all white vertices are of genus O then Hy(Xr)

is finite.

2. If I'x has no black terminal vertices, contains at most one white vertex of genus —1 and all

other white vertices are of genus 0 then Hy(Xr) is finite.

Lemma 3.4.5. Let X be 2-stratifold.

1. If m(X) 2 7Z x Zy, then T'x is homotopy equivalent to S, all white vertices are genus 0, and

all terminal vertices are white.

2. If m(X) = Z x Z then T'x is homotopy equivalent to S*, all white vertices are genus 0, and all
terminal vertices are white or I'x is a tree, all terminal vertices are white, and contains one

white vertex of genus 1 while all other white vertices are genus 0.

Proof. Suppose that I'x is a tree. By Lemma 3.4.4, if I'x has all white vertices of genus 0, and
contains at most one black terminal vertex or I'x has no black terminal vertices, contains at most

one white vertex of genus —1 and all other white vertices are of genus 0 then H;(Xt) is finite. Then
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by lemma 2.3.5 if 71 (X) is abelian and infinite then I'x has all white terminal vertices and contains
one white vertex of genus 1 while all other white vertices are genus 0. If 71(X) is isomorphic to
Z X Z, and T'x contains one white vertex of genus 1 then Z x Z, surjects onto Z x Z. If m(X) is
isomorphic to Z x Z then I'x has all white terminal vertices and contains one white vertex of genus
1 while all other white vertices are genus 0.

Suppose that I'x is not a tree. By Lemma 2.3.5, if m1(X) is abelian and infinite then I'y is
homotopy equivalent to S*, all white vertices are genus 0, and all terminal vertices are white. It
follows that if 71 (X) is isomorphic to Z x Z or Z x Z, then I'x is homotopy equivalent to S!, all

white vertices are genus 0, and all terminal vertices are white.
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CHAPTER 4

GRAPHS OF TRIVALENT 2-STRATIFOLDS WITH
FINITE FUNDAMENTAL GROUP

The goal of this chapter is to find further necessary conditions on the graph I'y of a trivalent
2-stratifold X so that 71 (X) is finite.

We begin with the definition of a trivalent 2-stratifold X and a surgery on the graph I'x. This
surgery, called operation B1, will be used many times in all the remaining chapters. We then find
conditions on I'x that guarantee that X will have infinite fundamental group. From these conditions,
we then determine the necessary conditions on I'x so that 71 (Xr) is finite. These are given by

Theorem 4.3.7.

4.1 Pruned trivalent 2-stratifolds

We review the definition of a trivalent 2-stratifold and the definition of a pruned trivalent
2-stratifold graph.

A 2-stratifold X is called trivalent if the graph I'x has every black vertex b either incident to
three edges, each with label 1, two edges, one with label 1, the other with label 2, or b is a terminal
vertex with adjacent edge of label 3. A graph I'y is also said to be trivalent if X is a trivalent
2-stratifold. A trivalent 2-stratifold that consists of one black vertex with all white vertices of genus 0
is called either a b111-tree, b12-tree, or a b3-tree if the black vertex has degree 3, 2, or 1 respectively.

Closed 2-manifolds are considered to be trivalent 2-stratifolds.

Figure 4.1: A bl12-graph, a bl11-graph, and a b3-graph.
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We recall the definition of p-strings and g¢-strings, which were introduced in [10]. A p-string of
length 27 is an oriented linear graph wg — by — w1 — bo — ... — b, — w, with all white vertices w; of
genus 0, successive edge labels 1212...12 (starting at wg) and with r labels of 2. A g-string is an
oriented linear graph with all white vertices w; of genus 0, successive edge labels 2121...21 (starting
at wp), and with r labels of 2. A p-string (or g-string) is terminal if w, is a terminal white vertex
of T.

If L is a terminal g-string then pruning L from I'x does not alter the fundamental group of a X.
We say a trivalent 2-stratifold graph I' is pruned if I' contains no terminal ¢g-strings. A trivalent

2-stratifold X is also said to be pruned if the associated labeled graph I'x is pruned.

4.2 Properties of trivalent 2-stratifold graphs

A useful operation on the graphs I'x of trivalent 2-stratifolds is introduced. This operation is a
surgery on I'x that will produce a graph I such that the fundamental groups 71 (Xr) and 1 (Xtv)
are isomorphic.

For trivalent 2-stratifolds X whose graph I'x contains n > 1 black vertices of degree 3, the
operation B1, (seen below), applied to the graph Iy produces a new graph I'” that contains n — 1

black vertices of degree 3.

e @ O @ O L ] O cee

()
MO
®
O

Figure 4.2: Operation Bl

Let I be a trivalent graph containing a black vertex b of degree 3 with adjacent vertices vy, va, v3,
such that v; is the initial vertex of a terminal p-string P; of length 2p; for i = 1,2. Operation B1
produces a trivalent graph I from I' by replacing st(b) U P; U P, with a p-string P’ (with initial
vertex v3) of length min{2p;,2ps}. The p-string P’ in TV will be referred to as the associated

p-string.
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Lemma 4.2.1. Let X be a trivalent 2-stratifold whose graph I'x contains n > 1 black vertices of

degree 3. Let b to be a black vertex of I'x with degree 3 that is adjacent to the initial vertex of two

terminal p-strings Py, Py with length 2pq, 2ps respectively. Let TV be obtained from T' by operation B1.
Then m1(X1) = m (X)) and I contains n — 1 black vertices of degree 3.

Proof. L-prune the terminal p-strings P;. In the resulting graph I", the black vertex b is adjacent
to two terminal vertices v}, vh where the edge incident to b and v} has label 2P¢. L-pruning induces
an isomorphism, so 71(Xr) is isomorphic to w1 (Xr/). Let the terminal linear graph, whose initial
vertex is b and whose terminal vertex is v}, be called L;

Construct I' by replacing (Lq \ b) U (L2 \ b) with a single terminal linear branch L” of length 1,
with initial vertex b, terminal vertex w of genus 0, and with edge label min(2P!,2P2). The group
m1(X7v) is isomorphic to 71 (Xp~) by Lemma 2.2.4.

The stratifold X1~ is not a trivalent 2-stratifold. Replace the terminal linear graph L” U st(b) Uvs
with a p-string P’ of length min(2p1, 2p2) with initial vertex which has been replaced by vs. The
resulting graph I’ contains n — 1 black vertices of degree 3, X is a trivalent 2-stratifold, and the

fundamental group 71 (X ) is isomorphic to w1 (Xr). O

By inductively applying the operation B1, it will be shown that a trivalent 2-stratifold graph I'x
will be produced with no black vertices of degree 3 if X has finite fundamental group. To insure this
can be inductively done, we show that certain trivalent 2-stratifold graphs I'x have the property
given in Corollary 4.2.3. Corollary 4.2.3 follows from the next lemma and we consider single white

vertices as a linear graphs.

Lemma 4.2.2. Suppose that I' is a tree. If every nonterminal vertex of I' has degree 3 then I’

contains two more terminal vertices than nonterminal vertices.

Proof. Suppose the graph I' has m total vertices then the number of edges is m — 1 since I' is a
tree. If I' contains k£ terminal vertices then the number of nonterminal vertices is m — k. By the

handshaking lemma we have

k+3(m—k) = 2(m — 1).

The total number of vertices is then m = 2k — 2. Therefore we get

29



(m—Fk)=k—2.

O

Corollary 4.2.3. Let X be a trivalent 2-stratifold. If I'x is a tree that contains n > 1 black vertices
of degree 3, all white vertices are degree < 2 and no black terminal vertices then I'x contains at least

two black vertices of degree 3 that are adjacent to the initial vertex of two terminal linear subgraphs.

4.3 Graphs of trivalent 2-stratifolds

The necessary conditions for when a graph I'x represents certain pruned trivalent 2-stratifolds
X with finite fundamental group is obtained. In this section, it is assumed that all 2-stratifolds X

have an associated graph I'x that is a tree that satisfies one of the following conditions:

1. The graph T'x has exactly one black terminal vertex, all other terminal vertices are white, and

all white vertices are genus 0.

2. The graph I'x has exactly one white vertex of genus —1, all other white vertices are genus 0,

and all terminal vertices are white.

3. The graph U'x has all white terminal vertices and white vertices are of genus 0.

By Theorem 2.3.3, these are necessary conditions on X for X to have finite fundamental group.

Lemma 4.3.1. Let X be a 2-stratifold. Denote a linear subgraph L of I'x with vertices wg — b1 — wy
and successive labels m,n as L(m,n). The black vertex by of L has degree 2 and the white vertices
w; of L are genus 0. Denote a linear subgraph L' of I'x with vertices wg — by — w1 — by — wy and
successive labels my,ni, ma,ng as L'(mq,n1,ma,na). The black vertex b; of L' have degree 2 and the
white vertices w; of L' are genus 0.

1. IfT'x contains a white vertex of genus —1 and a linear subgraph L(m,n) where k = ged(m,n) >

1 then m1(X) surjects onto Zg * Zy,.

2. If T'x contains at least two linear subgraphs Li(mi,n1), La(ma, na) where k; = ged(mi, n;) > 1

fori=1,2 then m1(X) surjects onto Zy, * Ly, .

3. If I'x contains a black terminal vertex whose incident edge has label v > 2 and a linear subgraph

L(m,n) where k = ged(m,n) > 1 then w1 (X) surjects onto Zy, * Z,.
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4. If T'x contains two linear subgraphs L1(2,1,1,2), La(2,1,1,2) then m(X) surjects onto ZoxZs.

Proof. (1.) Allow w to be the white vertex of genus -1 and let b be the black vertex of the the linear
subgraph L(m,n) of I'x. Let T be the linear subgraph of I'x with terminal vertices w,b. Prune I'x
at T. In the resulting graph, construct 7" by attaching to each black vertex that is not b a white
vertex of genus 0 with edge label 1. Then m(X) surjects onto w1 (Xq/) = Zsg * Zy,.

(2.) Allow b; to be the black vertex for linear subgraph L; of I'x for ¢ = 1,2. Further, let T' be
the linear subgraph of I'y with terminal vertices by, bo and prune I'x at T'. In the resulting graph,
construct 7" by attaching to each black vertex not by or by a white vertex of genus 0 with edge label
1. Then 71 (X) surjects onto my(Xpr) = Zi, * Zi,.

(3.) Allow b to be the black terminal vertex and let b" be the black vertex of the the linear
subgraph L of I'x. Let T be the linear subgraph of I'x with terminal vertices b, . Prune I'y at T'.
In the resulting graph, construct 7" by attaching to each black vertex not b or b’ a white vertex of
genus 0 with edge label 1. Then 7 (X) surjects onto 71 (X)) = Zy x Z.

(4.) This follows by a similar proof to (2.).

O

It should be noted that by the classification of simply connected trivalent 2-stratifolds, if X is a
pruned trivalent 2-stratifold where I'x has all white vertices of genus 0, all terminal edges have label
2, and all terminal vertices are white then X is not simply connected. We highlight this fact below
and use it to show certain trivalent 2-stratifold graphs I'x have an associated 2-stratifold X with

infinite fundamental group.

Lemma 4.3.2. Let X be a pruned trivalent 2-stratifold. If I'x has all white vertices of genus 0, all

terminal edges have label 2, and all terminal vertices are white then Xr ts not simply connected.

Lemma 4.3.3. Let X be a pruned trivalent 2-stratifold where the graph I'x has a label 2 for all
edges incident to a terminal white verter of genus 0. Then X has infinite fundamental group if U'x

contains at least one of the following:

1. a black terminal vertex with edge label 3 and a white vertex of degree > 2;
2. a white verter of genus —1 and a white vertex of degree > 2;

3. a white vertex of genus —1 with degree > 2;
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4. or at least two white vertex wy,wa of degree > 2.

Proof. (1.) Assume that b is the black terminal vertex of I'x and w is the white vertex of degree
> 2. Let L be the linear subgraph of I'x with terminal vertices b, w. Suppose e is the edge in L
incident to w. Let P be the subgraph of I'y that corresponds to the component of I'x \ e that
contains L \ {e,w} and let K be the subgraph of I'x that corresponds to the component of I'x \ e
that contains w. If I'x is pruned at K, the resulting graph K’ has a corresponding 2-stratifold X g
with nontrivial fundamental group 71 (Xg) by Lemma 4.3.2. Now for the graph I'x, attach a white
vertex of genus 0 with an edge of label 1 for all black vertices in P except b (see figure 4.3). Then

there is an epimorphism from 71(X) — m (Xg/) x Z3.

0 O
2 2

® O C—® O

2 1 2

Ol ) Ol )

o —0 > OO0

® Ol )

2 2

O O

Figure 4.3: Lemma 4.3.3

(2.) Let v be a white vertex of genus —1 and w be a white vertex of degree 3. Let L be the
linear subgraph of I'x with terminal vertices v, w. Suppose e is the edge in L incident to w. Let P
be the subgraph of Iy that corresponds to the component of I'x \ e that contains w. Prune I'y at
L U P. The statement follows by a similar proof to (1.) on the resulting graph I".

(3.) Suppose that I'x contains a white vertex v of degree 2 with genus -1 and assume all other
white vertices are degree < 2. (If I'x did contain a white vertex of genus 0 with degree >2 then by
the previous part X has infinite fundamental group.)

Suppose that I'x has no black vertices of degree 3. The vertex v is not terminal and I'x is
a linear graph. Let L; be the linear subgraph of I'x with initial vertex v and terminal vertex

w where w is a terminal vertex of I'x. Orient the subgraph L; so that vertices are ordered as
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w§ — bt —wi — b} — ... — bl — w} with corresponding edge labels m} —n} — ... —ml —

n! where
w§ = v and w} = w. Similarly, let Ly be the linear subgraph of T'x with initial vertex v and terminal
vertex w’ where w’ is the other terminal vertex of I'x. Orient the subgraph Lo so that vertices are
ordered as wg — b — w? — b3 — ... — b} — w? with corresponding edge labels m? —n? — ... —m? — n?
where w3 = v and w} = w'.

Suppose that at least one L; contains a linear subgraph T with vertices wj- — b; b1 w; b1
b§-+2 — w§+2 and successive labels 2,1,1,2. If T is disjoint from v then 71(X) surjects onto Zg * Zs.
If v is a terminal vertex of 7" then prune I'x at 7. Note that, there is a surjection from m (Xr) to

m1(X7). The group 71(X7) admits the following presentation:

{by,by,c,y: b2 =1,by = by, b3 =c,cy? =1}

The group m1(X7) is isomorphic Zg * Zo. Therefore if the subgraph L; of I'x contains a linear
subgraph T then 71(X) is infinite.

Suppose the labeling of L; beginning with the edge incident to v is given by 12...12. Prune I'x at
the linear subgraph w{ — b —v —b% —w?. The resulting stratifold X has vertices wi — bl —v—b? —w?

with successive edge labels, beginning at the edge incident to w1, 2,1,1,2. The 2-stratifold X has

a fundamental group that admits the following presentation:

{b1,b2,7 : b7 = 1,08 = 1,b1b27* = 1}.

The group 71 (Xy) surjects onto Zg * Zs.

Therefore for a graph I'x with no black vertices of degree 3 and a nonterminal white vertex of
genus —1, the fundamental group of Xt is infinite.

Suppose that I" contains one black vertex b of degree 3. The black vertex b is adjacent to the
initial vertex wy, we, w3 of three terminal linear trees 17, T5, T3 respectively. Let T} contain the white
vertex v of genus —1 then T5,T5 contain only white vertices of genus 0. If either T5, T3 contains a
subgraph wy — by — w; — by — wy with successive labels 2 —1—1—2 then 7 (X1) surjects onto Zy * Zs.
Otherwise, If Ty, T5 are p-strings then apply operation B1 to st(b) U T U T5. The resulting graph I
is a linear 2-stratifold with a nonterminal white vertex of genus -1. X has infinite fundamental

group and 71 (X) = 7 (X7]).
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By induction, we assume that if I'x contains k—1 > 0 black vertices of degree 3 and a nonterminal
white vertex of genus —1 then 7 (Xr) is infinite.

Now assume 'y contains k& > 0 black vertices of degree 3 and a nonterminal white vertex v of
genus —1. Let b be a black vertex of degree 3 that is adjacent to the vertices wi, ws, w3 such that w;
is the initial vertex of a terminal linear subgraph 7T; for ¢ = 1,2. (The black vertex b is an outermost
such vertex, in that at least two components of Iy \ st(b) contains only vertices with degree < 3.) If
v is contained in either 77 or 75, then by corollary 4.2.3, there exists another outermost black vertex
b’ of degree 3 that is adjacent to the initial vertex of two terminal linear branches that does not
contain v. We assume that v is not contained in T;. If there is a linear subgraph 1" with vertices
wj — bj1 — wjy1 — bjr2 — wjto and successive labels 2,1, 1,2 contained in some 7; then there is a
surjection from 71 (X) onto Zg x Zy. If T; are p-strings then apply operation B1 on st(b) UT; U T,
such that the resulting graph IV has k — 1 black vertices of degree 3 and 71 (Xr) = 71 (X). The
result follows.

(4.) Suppose that I'x has two white vertices wy, ws of degree > 2. Let L be a linear subgraph of
I'x with terminal vertices wi,ws. Let e; and ez be the edges incident to w; and ws respectively
contained in L. Let P be the subgraph of I'x that corresponds to the component of I'x \ {e1,e2}
that contains neither wy or we. Allow Kj; be the subgraph of I'x that corresponds to the component
of I'x \ e; that contains w;. If I'x is pruned at Kj, the resulting graph Kl’ has a corresponding
2-stratifold X K! with nontrivial fundamental group (X Kz{) by Lemma 4.3.2. Now for the graph
I'x, attach a white vertex of genus 0 with edge label one to each black vertex in the subgraph P.

Then 1 (X) surjects onto m1 (X;) * m1 (X ).

The next corollary follows from the proof of part (3.) of the previous lemma.

Corollary 4.3.4. If X is a pruned trivalent 2-stratifold whose graph U'x has a white terminal
vertez of genus —1 and all edges incident to a terminal vertex have label 2 then 71 (X) has infinite

fundamental group.

We note that corollary 4.3.4 is not true if we alter the condition on the terminal edge labels.
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Remark 4.3.5. For a pruned trivalent 2-stratifold X whose graph I'x has a white terminal vertex
of genus —1 and all edges incident to a terminal vertez of genus 0 have label 2, w1 (X) need not be

nfinite.

For example, a trivalent linear 2-stratifold wg — by — w1 — by — w3 with successive labels 1,2, 1, 2,
where wg has genus —1 and wi, wy have genus 0, has fundamental group Zs.
The figure below is an example of a horned tree. The main property of a horned tree Hp is that

71 (X ;) is isomorphic to Zs. We review the definition of a horned tree.

Figure 4.4: An example of a horned tree.

A horned tree Hr is a finite connected bipartite labelled tree such that
1. all white vertices are genus 0;

2. every black vertex b whose distance to a terminal white vertex is 1 has degree 2; otherwise b

has degree 3;
3. every nonterminal white vertex has degree 2;
4. every terminal edge has label 2, every nonterminal edge has label 1;
5. there is at least one vertex of degree 3.
A trivalent linear 2-stratifold wy — by — w1 — by — w3 with sucessive labels 2,1, 1,2 and all white
vertices of genus 0 will be considered a horned tree.
To construct a horned tree (with black vertices of degree 3) take a connected finite tree composed

of only b111-trees, delete the terminal vertices of this tree, and attach a b12-tree to each terminal

edge so that 2 is the terminal edge label in the resulting graph. The graph obtained is a horned tree.
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Lemma 4.3.6. Let X be a pruned trivalent 2-stratifold where the graph I'x has a label 2 for all
edges incident to a terminal white vertex of genus 0. Then X has infinite fundamental group if I'x

contains one of the following:

1. a white vertex v of genus —1 and a horned tree Hy such that v and Hy are disjoint;

2. two horned trees Hy, Ho where Hy and Hy are disjoint or H1 and Ho intersect at a vertex v
such that v = H1 N Hy ;

3. a black terminal vertex with edge label 3 and a horned tree Hp;

4. a white vertex w of degree > 2 and a horned tree Hy such that either w and Hr are disjoint

or w is a terminal vertex of Hr;

5. or a white vertex of degree > 3.

Proof. (1.) Suppose that v and Hyp are disjoint. By Lemma 4.3.3, v is a terminal vertex otherwise
X has infinite fundamental group. Attach to each black vertex not contained in Hp a white vertex
of genus 0 with edge label 1. Then there is an epimorphism from 1 (X) — Zg * Zo.

(2.) Suppose that Hy and Hs are horned trees contained in the graph I'x. Attach to each black
vertex not contained in Hi, Hy of I'x a white vertex of genus 0 with edge label 1. Then there is an
epimorphism from 7 (X) — Zga x Zs.

(3.) Suppose that b is the black terminal vertex. Attach to each black vertex not contained in
Hy or b a white vertex of genus 0 with edge label 1. There is an epimorphism from 71 (X) — Zg * Zs3.

(4.) Assume that w has degree equal to 3, all other white vertices are of degree < 3, and all
white vertices have genus 0. The two main cases of this proof is when Hrp is disjoint from w and
when w is a terminal vertex of Hrp.

Suppose that Hp is disjoint from w. Let L be the linear subgraph of I'x with terminal vertices
w and v where v is a terminal vertex of Hr such that L N Hy = v. Let e, ea be the edges incident
to w,v (respectively) that are contained in L. Allow the subgraph P to be the subgraph of I'x
that corresponds to the component of I'x \ {e1, e2} that contains L\ {e1, ez, w,v}. Also allow the
subgraph R to be the subgraph of I'x that corresponds to the component of I'x \ {e1} that contains
w. If T'x is pruned at R, the resulting graph R’ has a corresponding 2-stratifold Xz with nontrivial
fundamental group m (Xg/) by lemma 4.3.2. Prune I'x at RUe; Uey U PU Hp and attach white
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vertices of genus 0 with edge label 1 to all black vertices contained in P of the pruned graph. The
resulting graph I has a fundamental group isomorphic to m1(Xg/) * m1(Z2).

Now suppose that w is a terminal vertex of Hr and let e1, e be the edges incident to w that are
not contained in Hyp. Allow the subgraph of I'x corresponding to the component of I'x \ e; that
does not contain Hp be called D;. Let E; = D; Ue; Uw. By part (2.), if E; contains a horned tree
then 71 (X) is infinite, so we assume that E; contains no horned trees. Prune I'x at Fy U Es U Hp
and let the resulting graph be called T”. We now show that the fundamental group of X is infinite.
Therefore the fundamental group of Xt will be infinite.

If IV contains no black vertices of degree 3 then IV has a single white vertex w of degree 3 where
w is a terminal vertex of Hy and w is the initial vertex of two terminal p-strings E1, E5 of length
2p,2q. The associated 2-stratifold Xt has fundamental group that can be represented with the

following presentation:

Lo 4 94 . oo 2
{c1,¢2,¢c3:¢f =1,¢5 =1,¢5=1,c1c05 = 1}.

The fundamental group 71 (X7) surjects onto Zg x Zs. Therefore if IV contains no black vertices of
degree 3 then the fundamental group of Xt is infinite.

We proceed by induction. Assume that if IV contains & — 1 > 0 black vertices of degree 3 then
m1(X7v) is infinite.

Suppose that T has k& > 0 black vertices of degree 3. Let b be a black vertex of degree 3 that is
adjacent to the vertices wi, ws, w3 such that v; is the initial vertex of a terminal linear subgraph 7T;
for i = 1,2. (The black vertex b is an outermost such vertex, in that at least two components of
I'x \ st(b) contains only vertices with degree < 3.) If the terminal linear graphs 7; are contained in
E; or Hp then they are p-strings. Apply operation B1 on st(b) U T} U T, such that the resulting
graph I'” has k — 1 black vertices of degree 3 and m1(X}.) = m1(Xpr). The result follows.

(5.) Suppose that w is the white vertex of degree 4 contained in I'x. Then Iy contains all white
terminal vertices and all white vertices of genus 0, otherwise X has infinite fundamental group.

Suppose that I'x has no black vertices of degree 3. Let e; be the edges incident to w for 1 < i < 4.
Define L; to be the linear subgraph whose intial vertex is w, whose terminal vertex is a terminal

vertex of I'y, and L; contains the edge e;. If at least one L; contains a horned tree then Xt has
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infinite fundamental group. Assume then that each L; is a p-string of length 2p;. The 2-stratifold
Xr has fundamental group that can be represented with the following presentation:

Cop1 . opa . op3 . opa .
{ci,e2,¢c3,ca:¢f " =1,¢5 " =1,c5° =1,¢f =1,c1c0c3c4 = 1}.

This is an infinite F-group.

Suppose that I'x has k > 0 black vertices of degree 3. Let b be a black vertex of degree 3 that is
adjacent to the vertices wi, we, w3 such that v; is the initial vertex of a terminal linear subgraph
T; for i = 1,2. (The black vertex b is an outermost such vertex, in that at least two components
of 'y \ st(b) contains only vertices with degree < 3.) If T; contains a horned tree then Xt has
infinite fundamental group. We assume that the terminal linear subgraphs T; are p-strings. Apply
operation B1 on st(b) UTy U T, such that the resulting graph I has k — 1 black vertices of degree 3
and 71 (Xr) 2 71 (X). The result follows by the induction hypothesis.

O

Theorem 4.3.7. Let X be a pruned trivalent 2-stratifold where the graph I'x has a label 2 for all
edges incident to a terminal white vertex of genus 0. If X has finite fundamental group then I'x is a

tree that satisfies one of the following conditions:

1. T'x has one terminal vertex v of genus —1 whose incident edge label is 1 while all other white
vertices are genus 0, all terminal vertices are white, all white vertices are of degree < 2, and

T'x contains no horned trees;

2. I'x has all white vertices of genus 0, all terminal vertices are white, and there is exactly one
white vertex v of degree 3 while all other white vertices are of degree < 3, and I'x contains no

horned tree Hp such that either v and Hr are disjoint or v is a terminal vertex of Hp;

8. I'x has all white vertices are genus 0, all terminal vertices are white, all white vertices are of

degree < 2, and I'x contains at most one horned tree;

4. T'x has all white vertices are genus 0, one black terminal vertex, all white vertices are of degree

< 2, and I'x contains no horned tree.

Proof. By lemma 2.3.3, if X has finite fundamental group then the graph I'x is a tree that satisfies

one of the following conditions:
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1. The graph I'x has exactly one black terminal vertex, all other terminal vertices are white, and

all white vertices are genus 0.

2. The graph I'y has exactly one white vertex of genus —1, all other white vertices are genus 0,

and all terminal vertices are white.

3. The graph I'x has all white terminal vertices and white vertices are of genus 0.

If I'x contains exactly one white vertex v of genus —1 then v is terminal by Lemma 4.3.3 and
the label incident to v is 1 by Corollary 4.3.4. Further, all white vertices of I'x are of degree < 3 by
Lemma 4.3.3 and I'x contains no horned trees by Lemma 4.3.6.

If I'x contains all white vertices of genus 0 and all terminal vertices are white then there exists
at most one white vertex v of degree > 2 by Lemma 4.3.3. If all white vertices of ['x are of degree
< 3 then I'y contains at most one horned tree by Lemma 4.3.6. If I'x contains a white vertex v of
degree > 2 then v is degree 3 and I'x contains no horned tree Hy such that either v and Hp are
disjoint or v is a terminal vertex of Hr by Lemma 4.3.6.

If I'x contains exactly one black terminal vertex then I'x must have all white vertices of degree

< 3 by Lemma 4.3.3 and I'x cannot contain a horned tree Hy by Lemma 4.3.6.
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CHAPTER 5

LABELLINGS OF TRIVALENT 2-STRATIFOLDS
WITH FINITE FUNDAMENTAL GROUP

A classification of all trivalent labelled graphs that represent simply connected trivalent 2-stratifolds
was given in [7]. Then a classification of all trivalent labelled graphs that represent trivalent 2-
stratifolds with infinite cyclic fundamental group was given in [10]. The approach in the infinite cyclic
case was to find necessary and sufficient conditions on I'y such that m(X) = Z. In the previous
chapter we found the necessary conditions on I'x so that Xt has finite fundamental group. In this
chapter we show that the necessary conditions on I'x that allow Xt to have finite fundamental
group are sufficient conditions.

We first introduce a linear subgraph of I'x called an O-string (Order string). For a trivalent
2-stratifold X with finite fundamental group, O-strings will be used to determine the order of the
fundamental group. Then for X where I'x satisfies the necessary conditions in Theorem 4.3.7, we
compute the finite fundamental groups for X and the labellings of the associated graph I'x. This is
done in lemma 5.1.3, lemma 5.1.5, lemma 5.1.6, and lemma 5.1.7.

Core-reduced subgraphs were introduced in [10] for graphs I'x that are homotopy equivalent to
S1. These graphs were important in the classification of trivalent 2-stratifolds with infinite cyclic
fundamental group. We define core-reduced subgraphs for I'y where I'x is a tree. Then we use
core-reduced subgraphs and lemmas 5.1.3, 5.1.5-5.1.7 to obtain a classification of trivalent labelled
graphs that represent trivalent 2-stratifolds with finite fundamental group. This classification is

given by corollaries 5.2.3-5.2.7.

5.1 Labellings of trivalent 2-stratifolds

In this section we compute the finite fundamental groups of the 2-stratifolds Xt whose associated
bipartite labelled graphs I' satisfy the necessary conditions given by Theorem 4.3.7.
The figure below is an example of a graph I' that satisfies a set of conditions given by Theorem

4.3.7. The fundamental group of Xr is Z15. The order of this fundamental group is determined by
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the linear subgraph with initial vertex given by the genus —1 vertex and terminal vertex given by
t1. The connected subgraphs of I' that are composed of red edges along with incident vertices are

terminal p-strings. We use this example as motivation for the definition of an O-string.

t
5 1
2
2
O8O
—~
, 5@ ()
Figure 5.1: The graph I'.
An O-string of length 2r is an oriented linear graph wg — by — w1 — by — ... — b, — w,- where the

genus of wy is either 0 or —1 while all other white vertices w; are of genus 0, the labels m;, n; for
the successive edges of w;_1 — b; — w; are either m; = 1,n; =1 or m; = 1,n; =2 for 0 < i < r, and
the labels m,., n, for the edges of w,_1 — b, — w, are given by the labels m, = 1,n,, = 2. We note
that terminal p-strings are O-strings.

Lemma 5.1.2 observes that certain subgraphs of a given O-string are preserved under operation
B1. For example, the graph I'” below is obtained by applying operation Bl to the graph I' in the
above figure. The linear subgraph with initial vertex given by the genus —1 vertex and terminal
vertex given by ¢ is an O-string in both T' and I” and contains the same number of edges with label
2. The subgraph composed of red edges and incident vertices in I'" is the terminal associated p-string
in I

tq

Figure 5.2: The graph I'V obtained from applying operation B1 to T'.
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Before lemma 5.1.2, we introduce some notation and observe a fact about operation B1 and the

graphs 'y, I".

Remark 5.1.1. Consider X to be a trivalent 2-stratifold where I x contains a black vertex b of degree
3 with adjacent vertices vy, va, v3, such that v; is the initial vertex of a terminal p-string P; fori =1,2.
Let T be obtained from T by operation Bl at st(b) U Py U Py. Let P’ be the associated p-string in T".
The operation Bl does not alter T'x \ (st(b) U Py U Py). Then I"\ (P \ v3) = T'x \ (st(b) U P U P»).

For convenience, if v is a vertex of I that is contained in I\ (P’ \ v3) then the same vertex
in I'x contained in I'x \ (st(b) U Py U Pa) will also be called v and vice versa. Similarly, if L is a
linear subgraph of T' that is disjoint from P’ \ vs with initial vertex v and terminal vertexr w then
the linear subgraph with initial vertex v and terminal vertex w contained in I'x that is disjoint from
st(b) U Py U Py will also be called L and vice versa. Whether such an L is a subgraph of T or a
subgraph of I'x will be determined by context.

In general since TV \ (P \ v3) = T'x \ (st(b) U Py U Py), if S is a subgraph of T" that is contained
in T"\ (P'\ vs) then the same subgraph in Tx contained in Tx \ (st(b) U Py U Py) will also be called
S and vice versa.

We note that if L is an O-string in T that is disjoint from P\ vs then L is an O-string in T'x
that is disjoint from st(b) U Py U Ps.

Lemma 5.1.2. Let X be a trivalent 2-stratifold whose graph U'x is a tree that contains n > 1 black
vertices of degree 3. Let b be a black vertex of degree 3 with adjacent vertices vy, va,vs, such that v;
is the initial vertex of a terminal p-string P; of length 2p; for i = 1,2. Let I” be obtained from T" by
operation Bl at st(b) U Py U Py. Let P’ be the associated p-string in I".

Let L; be a linear subgraph of I'x with an initial vertex w which is a white vertex not contained
in P; and a terminal vertex t; where t; is the terminal vertex of P; and a terminal vertex of I'x. Let
L’ be a linear subgraph of T with initial vertexr w not contained in P'\ ws and terminal vertex t'

where t' is the terminal vertex of P' and a terminal vertex of I".
1. If L' is an O-string then Ly, Ly are O-strings.

2. If L' is an O-string that contains k edges with label 2 then Ly, Ly contains r > k edges with
label 2 and at least one L; has k edges with label 2.

3. If T contains a horned tree Hy+ then T'x contains a horned tree Hr.
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4. If a horned tree Hy+ of TV contains a terminal vertex of I then a horned tree Hy of I'x contains

a terminal vertex of I'x.

Proof. (1.) Suppose L' is an O-string. Let S be the linear subgraph wg — by —wy — by — ... — b, — w,
of L' with initial vertex wg = w and terminal vertex w, = v3. For 1 < ¢ < r, the labels m;, n; for the
successive edges of w;_1 — b; — w; contained in S are either m; = 1,n; =1 or m; = 1,n; = 2. Let N;
be the linear subgraph of L; with initial vertex vs and terminal vertex ¢;. The subgraph N; is an
O-string. The subgraph L; is composed of the subgraph S with initial vertex w and terminal vertex
vs followed by the subgraph N; with initial vertex vs and terminal vertex ¢;. The linear graph L; is
an O-string.

(2.) Suppose that L' is an O-string that contains k edges with label 2. Let S and N; be linear
subgraphs as definied in (1.). By the previous proof L; is an O-string. The subgraph S has ' > 0
edges with label 2. The subgraph P’ has k¥’ edges with label 2 where k¥’ 4+ r’ = k. The integer &’ is
the minimum of {p1,p2}. Therefore for some i, N; has k" edges with label 2. Then the linear graph
L; has k' + 1’ = k edges with label 2.

(3.) Suppose I contains a horned tree Hy. For the terminal p-string P’ of I”, order the vertices
wh — by —w) — by — ... — bl —w]. so that the initial vertex wy is v3 and w]. is the terminal vertex ¢’ of
I". The horned tree Hy- is disjoint from P’ or intersects P’. If the horned tree Hyp is disjoint from
P’ then Hypv is contained in I'x.

Suppose that Hp intersects P’. Then Hrp intersects P’ at only the vertex vs or along the linear
subgraph P” with initial vertex vs and terminal vertex wj. The linear subgraph P” has vertices
w(, — b} —w) where w(; = vz and successive labels 1, 2. If the horned tree Hy intersects the subgraph
of P/ only at vg then Hyv is contained in I'x. Suppose that the horned tree Hy contains the
subgraph P” of P’. Let H be a subgraph of Hy» where H = Hyr \ (st(b}) Uw}). Then H is contained

i
T

in I'x. For the terminal p-strings P; of I'x, order the vertices wj — b — w! — b} — ... — bfnb —w
where wé = v; and wf,i =t; of I'x for ¢ = 1,2 and define F; to the linear subgraph of I'x with initial
vertex v3 and terminal vertex w”j. Then H U Ey U E5 is a horned tree contained in I'x.

(4.) Suppose I" contains a horned tree Hy» where Hp contains a terminal vertex of I, Let w

be a terminal vertex of IV that is contained in Hps. If P’ is disjoint from Hpv then Hy is contained

in 'x and w is a terminal vertex of I'x and Hps. We assume that P’ is not disjoint from Hy.
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Suppose that w is disjoint from P’. Let H be the subgraph of Hy as defined in part (3.). The
vertex w is contained in H and either Hpr is contained in I'x or the horned tree Hy = H U E1 U E»y
is contained in I'x where H, F; are defined as in part (3.). If Hys is contained in I'x then w is a
terminal vertex of I'xy and Hps. If Hp is contained in I'x then w is a terminal vertex of I'x and Hr.

Suppose that w is contained in P’. Then P’ is a p-string of length 2 with initial vertex v and
terminal vertex w. It follows from (2.) that at least one of the terminal linear branches P; in I'x is
p-string of length 2. The horned tree H U E7 U E5 contains a terminal vertex of I'x.

O

Lemma 5.1.3. Let X be a pruned trivalent 2-stratifold where I'x has a label 2 for all edges incident
to a terminal white vertex of genus 0. Let I'x have all white vertices of genus 0, all terminal vertices

are white, and all white vertices are of degree < 2. If m1(X) is finite then all of the following hold:
1. I'x contains a horned tree Hr.

2. If L is a linear subgraph of I'x whose initial vertex v is a terminal vertex of Hr and whose
terminal vertex w is a terminal vertex of U'x where L N Hy = v and w # v then L is an

O-string.

3. The fundamental group w1 (X) is isomorphic to Zor+1 where the integer k = 0 if Hp contains
a terminal vertex of I'x and k > 0 otherwise. The integer k > 0 corresponds to the minimal
number of edges with label 2 in all linear subgraphs L whose initial vertex v is a terminal vertex

of Hr and whose terminal vertex w is a terminal vertex of I'x where L N Hr = v and w # v.

Proof. By theorem 4.3.7, the fundamental group 7 (X) is finite implies that the graph I'x is a tree
that contains at most one horned tree.

Suppose that I'x has no black vertices of degree 3. The graph I'x is a linear graph. Orient
the graph I'x so that vertices are ordered as wyg — by — w1 — by — ... — b, — w, with corresponding
edge labels m; —n; — ... — m, — n,. By assumption the subgraph wg — b; — w; has successive
labels m, = 2,n1 = 1 and the subgraph w,_1 — b, — w, has successive labels m, = 1,n, = 2. Each
subgraph w;_1 — b; — w; for 1 < i < r has successive labels m; =2,n; =1 or m; = 1,n; = 2. There
exists a j, where 1 < j <, such that w;_s — b;_1 — w;j_1 has successive labels m;_1 =2,n;_1 =1
and w;j_1 — bj — w; has successive labels m; = 1,n; = 2. The graph I'x contains a horned tree H
given by the graph w;_o —b;_1 —wj_1 — b; —w;. By lemma 4.3.6, I'x does not contain any other

horned tree.
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Suppose H does not contain a vertex that is terminal in I'y. Let L; be the linear subgraph
of I'x with initial vertex w;_o and terminal vertex wg and let Lo be the linear subgraph of I'x
with initial vertex w; and terminal vertex w,. The linear subgraphs L1, Ly are p-strings of length
2p1,2po. Otherwise 'y contains more than one horned tree. Note that Li, Lo are O-strings. L-
prune I'x at the linear subgraphs L; and Ls. The resulting graph IV is a linear graph where
'=r1'(2r,1,2,1,1,2,1,2P2) and 71 (Xr) = m (X). A presentation of the fundamental group of

X is given by:

Coom 2 2 _ P2
{z1,29, 3,24 : 2] = 1,21 = 25,02 = x3,23° = x4, 2] = 1}.

This presentation is equivalent to:

X 9p1+1 9p2+1
{zz:25 =125 =1}

This group is finite cyclic of order given by the min(2Pt+! 2P2*1) " Therefore 71 (X) = Zor+1
where k is the minimum of {p1, p2}. The number k is the minimum number of edges with label 2 in
the O-strings L1, Lo.

Suppose that H contains a vertex that is terminal in I'x. Assume that the horned graph H is
wo — by — w1 — by — wy. The linear subgraph L of I'x with initial vertex wy and terminal vertex w;
is p-string of order 2(r — 2) = 2p; (and hence an O-string). L-prune I'x at the linear graph L. The
resulting graph I is a linear graph (with terminal white vertices) where IV =T17(2,1,1,2,1,2P1). A
presentation of the fundamental group of X is given by:

L2 — 2 _ 2P
{z1,22,23 1 2] = 1,21 = x2, 25 = x3,25 = 1}.

This presentation is equivalent to:

{zy:22 =1}

Therefore m (X) = Zg if H contains a terminal vertex of I'x.
We conclude that if X has finite fundamental group and the graph I'x is a linear graph then the
lemma is true. We now show that this lemma holds for a graph I'x with one black vertex of degree

3 then proceed with induction for a graph I'y with n > 1 black vertices of degree 3.
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Suppose that I'x contains one black vertex b of degree 3. The black vertex b is adjacent to
the initial vertex vy, vo, vy of three terminal linear subgraphs 717,75, T3 respectively. At most one
terminal linear subgraph 77,75, T3 contains a horned tree. If T; does not contain a horned tree then
T; is a p-string. Let 11,715 be p-strings. Let the terminal vertices of T; which are terminal vertices
of I'x be called t; for i = 1,2. Apply operation B1 to st(b) UT; UT,. The resulting graph I" is a
linear 2-stratifold. Let the associated p-string be called T7”. Note that v3 is the initial vertex of the
associated p-string 7" in I and v3 is not a terminal vertex of either I'x or IV. The fundamental

group 71 (Xyv) is isomorphic to Zgki1 for k > 0 and IV contains a horned tree H'. Orient the graph

I so that vertices are ordered as wj — b} — w} — by, — ... — b, — w/. with corresponding edge labels
mj —n} —...—m. —m/. Then there is a j, where 1 < j < r such that w;_Q — b;-_l —w;_l — b;- — w;

is a horned tree H'.

The fundamental group 71(Xr) is isomorphic to m1 (X)) and by Lemma 5.1.2 if I contains a
horned tree H' then I'x contains a horned tree H. Further if 7y (Xv) is isomorphic to Zs then the
horned tree H' of I contains a terminal vertex of I'. It follows that 71 (Xr) is isomorphic to Zg and
by Lemma 5.1.2 the horned tree H contains a terminal vertex of I'x.

We now show that all linear subgraphs L of I'x whose initial vertex v is a terminal vertex of H
and whose terminal vertex w is a terminal vertex of I'x where H N L = w and v # w are O-strings.
Then we show that if 71 (I'x) & Zgr+1 where k > 0 that k corresponds to the minimal number of
edges with label 2 in all O-strings L with initial vertex v and terminal vertex w.

Suppose that m;(Xp/) = Zs. Let the horned tree H' be the subgraph w{, — b} —w} — by — wj in
I'V. Let L' be the linear subgraph of I with initial vertex w) and terminal vertex w/.. The vertex vs
is either a nonterminal vertex of H’, a terminal vertex of H’, or disjoint from H’.

If v3 is disjoint from H' in I then v3 = w] where 2 < i < r and H' is properly contained in the
terminal linear subgraph T3 of I'x. If v3 is a terminal vertex of H' then vs = w) and the horned
tree H' is the terminal linear subgraph T3 of I'y. Since the linear subgraph L' is a p-string in I, it
follows by Lemma 5.1.2, that every linear subgraph L of I"x whose initial vertex is w) and whose
terminal vertex is t; of I'x is an O-string.

If v3 is a nonterminal vertex of H' then v3 = w/|. The horned tree H contained in I'x contains
the black vertex b. Therefore the terminal linear branches 17,715,735 are all p-strings. T3 is of length

2. If T; is of length > 2 then let O; be the linear subgraph contained in 7; whose initial vertex v is a
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terminal vertex of H and whose terminal vertex is a terminal vertex of I'x such that O; N H = v.
Then O; is a p-string.
Suppose that 71 (Xr/) & Zgks1 where k > 0. Then H' is the subgraph of IV with vertices

/

/ / / /
/w]—Q_bj—l_w’ —b. — W

-1 f J where 2 < j < r. The horned tree H' does not contain a terminal

vertex of I, Let L} be the linear subgraph of I with initial vertex w;»_Q and terminal vertex wy,
and let L}, be the linear subgraph of IV with initial vertex w;- and terminal vertex w!.. The linear
subgraphs L, L} are p-strings of length 2p/, 2p, where p, > k and for at least one L we have p} = k.
Suppose that vs is contained in the linear graph whose initial vertex is w;_l and whose terminal
vertex is wl.. (If vs is contained in the linear graph whose initial vertex is w}fl and whose terminal
vertex is w(, then the same argument applies.) The vertex vg is either a nonterminal vertex of H', a
terminal vertex of H', or disjoint from H'.

If v3 is disjoint from H’ in I” then vs = w] where j < i < r and H' is properly contained in the
terminal linear subgraph T3 of I'x. If v3 is a terminal vertex of H' then vz = w;- and H' is properly
contained in the terminal linear subgraph T3 of I'x. In both cases since the linear subgraph L} in I”
is a p-string, it follows by Lemma 5.1.2, that every linear subgraph L of I'xy whose initial vertex is
w’; and whose terminal vertex ¢; of I'x is an O-string. L] is a p-string in I" that is disjoint from 7".
By remark 5.1.1, L} is contained in I'x. Let R; be a linear subgraph of Iy whose initial vertex is w§-
and whose terminal vertex is ¢;. If L, contains k edges with label 2 then at least one R; for i = 1,2
contains k edges with label 2. If L}, does not contain k edges with label 2 then R; contains more
than k edges with label 2. Then the subgraph L} of I contains k edges with label 2. By remark
5.1.1, L} is contained in I'x.

/
Jj—1

If v3 is a nonterminal vertex of H' then v3 = w The horned tree H contained in I'x contains
the black vertex b. Therefore the terminal linear branches 77,75, T3 are all p-strings. By the same
argument in the previous paragraph, all terminal p-strings 7; are of length | where [ > 2(k + 1) and
at least one T; is of length 2(k + 1).

The lemma holds for a graph I'x with one black vertex of degree 3. We now proceed with
induction for a graph I'x with n > 1 black vertices of degree 3.

Suppose that I'x contains n > 1 black vertices of degree 3. Let b be a black vertex of degree 3
that is adjacent to the vertices v, v2, v3 such that v; is the initial vertex of a terminal linear subgraph

T; for i = 1,2. (The black vertex b is an outermost such vertex, in that at least two components of
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I'x \ st(b) contains only vertices with degree < 3.) If T; does not contain a horned tree then 7; is
a p-string. If either 77 or T contains a horned tree, then by corollary 4.2.3, there exists another
outermost black vertex b of degree 3 that is adjacent to the initial vertices of two terminal linear
branches T7,T;. Since Xt has finite fundamental group the two terminal linear branches 77, T3 do
not contain a horned tree. We assume 717 and 75 do not contain a horned tree. Then T; and T5 are
terminal p-strings. Let the terminal vertices of T; which are terminal vertices of I'x be called t; for
i =1,2. Apply operation B1 to st(b) UT) UTy. The resulting graph I'” has n — 1 black vertices of
degree 3. Let the associated p-string be called 77 and let the terminal vertex of 7 and I be called
t'. By the induction hypothesis, m1(Xy) is isomorphic to Zgrt1 for k> 0 and I” contains a horned
tree H'.

The fundamental group 7 (Xr) is isomorphic to m1(Xp/) and by Lemma 5.1.2 if I contains a
horned tree H' then I'x contains a horned tree H. Further if 7 (X) is isomorphic to Zs then the
horned tree H' of I contains a terminal vertex of I'. By Lemma 5.1.2, this implies that 7 (X7) is
isomorphic to Zs and the horned tree H contains a terminal vertex of I'x.

Let L' be a linear subgraph of IV whose initial vertex v’ is a terminal vertex of H' and whose
terminal vertex w' is a terminal vertex of IV where L' N H' = v/ and w’ # /. By the induction
hypothesis L’ is an O-string. By remark 5.1.1 and lemma 5.1.2, if I’ is disjoint from 7"\ v3 then L’
is an O-string in 'y that is disjoint from st(b) U Ty U Ty and the initial vertex v’ of L’ is a terminal
vertex of Hp. We assume L' is not disjoint from 7"\ v3. Then the terminal vertex w’ of L' is ¢/
which is the terminal vertex of 77. The vertex vs is either a nonterminal vertex of H', a terminal
vertex of H', or disjoint from H'.

If v3 is disjoint from H’ then L’ properly contains the p-string T”. If v3 is a terminal vertex of
H' then L' is the p-string T'. In both cases H' is contained in I'x. It follows by Lemma 5.1.2, that
every linear subgraph L of I'x whose initial vertex is v’ and whose terminal vertex is ¢; of I'x is an
O-string.

If v3 is a nonterminal vertex of H' then L’ is properly contained in 7”. For the terminal p-strings
T; of Tx, order the vertices wf — b} — wi — b — ... — b, — w!. where w{y = v; and w., =t; of I'x for
i = 1,2. The terminal linear subgraphs 77,75 of I'x intersect the horned tree H at the subgraphs
wh — b4 — wi. The terminal linear subgraphs of T3, Th whose initial vertex is w! and whose terminal

vertex is t; is an O-string.
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Suppose that 71 (X1) = Zok+1 where k > 0. Then H’ does not contain a terminal vertex of I'".
By the induction hypothesis, there exists an O-string L’ of I" whose initial vertex is a terminal
vertex v’ of H' and whose terminal vertex w’ is a terminal vertex of IV where L' N H' = v’ and L’
contains k edges with label 2. The number k is minimal among all such O-strings. By remark 5.1.1
and lemma 5.1.2, if L' is disjoint from 7"\ v3 then L’ is an O-string in I'y that is disjoint from
st(b) UTy UT, and the initial vertex v’ of L’ is a terminal vertex of H. We assume L’ is not disjoint
from T\ vs.

The vertex v3 is either a nonterminal vertex of H’', a terminal vertex of H’, or disjoint from H’.
If v3 is disjoint from H’ then L’ properly contains the p-string 7”. If v3 is a terminal vertex of H’
then L’ is the p-string T’. In both cases H' is contained in I'x. It follows by Lemma 5.1.2, that at
least one linear subgraph L of I'x whose initial vertex is v and whose terminal vertex is ¢; of I'x is
an O-string with k edges with label 2.

If v3 is a nonterminal vertex of H’ then L’ is properly contained in T”. The terminal linear
subgraph T” contains k + 1 edges with label 2. For the terminal p-strings T; of I x, order the vertices
wh — b —wh — b — ... — bfnl — wii where wj) = v; and wfnb =t; of I'y for i = 1,2. The terminal linear
subgraphs 11,15 of I'x intersect the horned tree H at the subgraphs wé — bl —w! and by lemma
5.1.2 at least one of the terminal linear subgraph 77,75 contains k + 1 edges with label 2. Therefore
at least one of the terminal linear subgraphs of T3, T whose initial vertex is w? and whose terminal
vertex is t; is an O-string with k edges with label 2.

O

In the proof of the previous lemma, corollary 4.2.3 insured us that we could find an outermost
black vertex of degree 3 that is adjacent to the initial vertices of terminal p-strings for I'x with n > 1
black vertices of degree 3. A similar statement to corollary 4.2.3 is now made for 'y containing a

black terminal vertex. This statement follows from Lemma 4.2.2.

Corollary 5.1.4. Let X be a trivalent 2-stratifold. If I'x is a tree that contains n > 1 black vertices
of degree 3, all white vertices are of degree < 2, and one black terminal vertex then I'x contains
at least two black vertices of degree 8 that are adjacent to the initial vertex of two terminal linear

subgraphs.

49



Lemma 5.1.5. Let X be a pruned trivalent 2-stratifold where I'x has a label 2 for all edges incident
to a terminal white verter of genus 0. Let I'x have one white terminal vertex of genus —1 with
incident edge label 1 while all other white vertices are genus 0, all terminal vertices are white, and
all white vertices are of degree < 2. If w1 (X) is finite then all of the following hold:

1. Let L be a linear subgraph of I'x whose initial vertex v is the white vertex of genus —1 and

whose terminal vertex w is a terminal vertex of I'x where w # v. Then L is an O-string.

2. The fundamental group 71 (X) is isomorphic to Zqr+1 where the integer k > 0 corresponds to
the minimal number of edges with label 2 in all L whose initial vertex v is the white vertex of

genus —1 and whose terminal vertex w is a terminal vertex of I'x where w # v.

Proof. By theorem 4.3.7 the fundamental group 71 (X) is finite implies I'x is a tree that contains no
horned trees. Let v be the terminal white vertex of genus —1.

Suppose that I'x has no black vertices of degree 3. The graph I'x is a linear graph. Orient
the graph I'x so that vertices are ordered as wg — by — w; — by — ... — b, — w, with corresponding
edge labels my —n1 — ... — m, — n, and wyg = v. By assumption the labels m; = 1,n; = 2 and
m, = 1,n, = 2. If there exists a subgraph w;_1 — b; — w; for 1 < ¢ < r with successive labels
m; = 2,n; = 1 then I'x contains a horned tree. Therefore each subgraph w;_1 —b; —w; for 1 < i <r
has successive labels m; = 1,n; = 2. The graph I'x is an O-string. L-prune 'y, the resulting
graph I'" is a linear graph with vertices wg — b} — w] where IV = I"(1,2") and wp has genus —1. A

presentation of the fundamental group of Xt is given by:

{xluyac : ‘r%r = ]-71:1 = C,Cy2 = 1}

This presentation is equivalent to:

{y:y¥" =1},

Then 71 (X) = Zgyr+1 where r is the number of edges with label 2 in the O-string I'x.

Suppose that I'x contains one black vertex b of degree 3. The black vertex b is adjacent to
the initial vertex vy, v, v3 of three terminal linear subgraphs 17, Ts, T3 respectively. One terminal
linear subgraph 77,75, T3 contains the vertex v. If T; does not contain v then T; is a p-string. Let

T1,T5 be p-strings. Let the terminal vertices of T7,T» which are terminal vertices of I'y be called t;.
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Apply operation B1 to st(b) UT; UTs. The resulting graph I" is linear graph. Orient the graph
I so that vertices are ordered as wj — b} — w} — by, — ... — b — w/. with corresponding edge labels
mj —nj —...—m. —nl and let wj = v. Then each subgraph w} ; — b, —w} for 1 < i < r has
successive labels m, = 1,n, = 2 and m;(X) = Zyr+1. The fundamental group 71 (Xr) is isomorphic
to 71 (Xrv). By Lemma 5.1.2, If v3 = w/} for 0 < i < r then the linear subgraph L; in I'x with initial
vertex w(, = v and terminal vertex ¢; is an O-string and at least one L; contains r edges with label 2.

Suppose that I'x contains n > 1 black vertices of degree 3. Let b be a black vertex of degree 3
that is adjacent to the vertices vy, v9, v3 such that v; is the initial vertex of a terminal linear subgraph
T; for i = 1,2. (The black vertex b is an outermost such vertex, in that at least two components of
I'x \ st(b) contains only vertices with degree < 3.) If T; does not contain v then 7; is p-string. If T;
contains v then by corollary 4.2.3, there exists another outermost black vertex b’ of degree 3 that is
adjacent to the initial vertex of two terminal linear branches T7,T5. Then 7] and T} are terminal
p-strings. We assume that both 77 and 75 are terminal p-strings. Let the terminal vertices of T;
which are terminal vertices of I'x be called ¢; for i = 1,2. Apply operation B1 to st(b) UTy U T5.
The resulting graph I has n — 1 black vertices of degree 3. Let the associated p-string be called T”
and let the terminal vertex of 7" and I" be called t'.

By the induction hypothesis, 71 (Xyv) is isomorphic to Zgkr1 for k > 0. The fundamental group
7m1(Xr) is isomorphic to my (Xyv).

Let L’ be a linear subgraph of I” whose initial vertex is v and whose terminal vertex w’ is a
terminal vertex of I'" where v # w’. By the induction hypothesis L’ is an O-string. If L’ is disjoint
from T" \ v3 then L' is disjoint from 7”. By remark 5.1.1, L' is an O-string in I'x that is disjoint
from vg U st(b) UTy U Ty, We assume L' is not disjoint from 7"\ v3. Then the terminal vertex w’ of
L’ is t’ which is the terminal vertex of 7. By Lemma 5.1.2 it follows that every linear subgraph L
of I'x whose initial vertex is v and whose terminal vertex is ¢; of ['x is an O-string.

By the induction hypothesis, there exists an O-string L’ of IV whose initial vertex is v and whose
terminal vertex w’ is a terminal vertex of IV where v # w’ and L’ contains k& > 0 edges with label 2.
The number k is minimal among all such O-strings. If L’ is disjoint from 7"\ vs then L’ is disjoint
from 7. By remark 5.1.1, L’ is an O-string in I'x that is disjoint from vz U st(b) U Ty U Th. We

assume L' is not disjoint from 7"\ v3. Then the terminal vertex w’ of L’ is ¢’ which is the terminal

51



vertex of 7. By Lemma 5.1.2 there exists an O-string of I'x whose initial vertex is v and whose
terminal vertex is t; of I'x with exactly k edges with label 2 for some i = 1, 2.

O

Lemma 5.1.6. Let X be a pruned trivalent 2-stratifold where I x has a label 2 for all edges incident
to a terminal white vertex of genus 0. Let I'x have all white vertices of genus 0, one black terminal
vertex, and all white vertices are of degree < 2. If (X)) is finite then all of the following hold:

1. Let L be a linear subgraph of I'x whose initial vertex v is the white vertex adjacent to the black

terminal vertexr and whose terminal vertex w is a white terminal vertex of I'x. Then L is an

O-string.

2. The fundamental group m (X) is isomorphic to L3 (ory where the integer k > 0 corresponds to
the minimal number of edges with label 2 in all L whose initial vertex v is the white vertex
adjacent to the black terminal vertex and whose terminal vertexr w is a white terminal vertex of
I'y.

Proof. By theorem 4.3.7 the fundamental group 71 (X) is finite implies that I'x is a tree that contains
no horned trees. Let b” be the black terminal vertex of I'x and let v be the white vertex adjacent to
b

Suppose that I'x has no black vertices of degree 3. The graph I'x is a linear graph. Orient the
graph I'x so that vertices are ordered as by — wy — by — ... — by41 — wyr41 With corresponding edge
labels ny — ... — my11 — nyy1 where by = b”. By assumption the labels m, = 1,n,, = 2. If there
exists a subgraph w;_1 — b; — w; for 1 < i < r + 1 with successive labels m; = 2,n; = 1 then I'x
contains a horned tree. Therefore each subgraph w;_1 — b; — w; for 1 < i < r + 1 has successive
labels m; = 1,n; = 2. The linear graph L with initial vertex w; and terminal vertex w;,41 in I'x is
an O-string. L-prune I'x, the resulting graph I" has vertices by — w} with edge label n = 3% 2". A

presentation of the fundamental group of Xt is given by:

{z1: 23 =1},

Then 71(X) = Zs.or where r is the number of edges with label 2 in the O-string L.
Suppose that I'x contains one black vertex b of degree 3. The black vertex b is adjacent to the
initial vertex vy, v, vs of three terminal linear subgraphs 17, T5, T3 respectively. One terminal linear

subgraph T}, Ty, T3 contains the black terminal vertex b” of I'x. If T; does not contain b” then Tj is
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a p-string. Let 17,15 be p-strings. Let the terminal vertices of 17,75 which are terminal vertices of
I'x be called t;. Apply operation B1 to st(b)UT; UT5. The resulting graph I' is linear graph. Orient
the graph I" so that vertices are ordered as b} —w} — by — ... = .| —w;. | with corresponding edge
labels ny — ... —m;_; —n,. ;. Then each subgraph w;_; — b} — wj for 1 <i < r 4 1 has successive
labels m} = 1,n} = 2 and m1(X) = Zs.or. The fundamental group 1 (Xt) is isomorphic to 71 (Xp).
By Lemma 5.1.2, If v3 = w] for 1 <4 < r + 1 then the linear subgraph L; in I'x with initial vertex
w(, = v and terminal vertex t; is an O-string and at least one L; contains r edges with label 2.

Suppose that I'x contains n > 1 black vertices of degree 3. Let b be a black vertex of degree 3
that is adjacent to the vertices v1, vo, v3 such that v; is the initial vertex of a terminal linear subgraph
T; for i = 1,2. (The black vertex b is an outermost such vertex, in that at least two components
of I'x \ st(b) contains only vertices with degree < 3.) By corollary 5.1.4, If 7; contains b” then
there exists another outermost black vertex o’ of degree 3 that is adjacent to the initial vertex of
two terminal linear branches 77, Ty which do not contain b”. We then assume that both 77,7 do
not contain b” and T}, T are terminal p-strings. Let the terminal vertices of T; which are terminal
vertices of I'x be called ¢; for ¢ = 1,2. Apply operation B1 to st(b) UT; UT5. The resulting graph
I'" has n — 1 black vertices of degree 3. Let the associated p-string be called 7" and let the terminal
vertex of T and I be called t'.

By the induction hypothesis, 71 (Xp/) is isomorphic to Zs,or for k > 0. The fundamental group
m1(Xr) is isomorphic to m (Xp).

Let L' be a linear subgraph of IV whose initial vertex is v and whose terminal vertex w’ is a
white terminal vertex of IV. By the induction hypothesis L’ is an O-string. If L’ is disjoint from
T\ vs then L’ is disjoint from T”. By remark 5.1.1, L’ is an O-string in I'x that is disjoint from
v3 U st(b) UT) UTy. We assume L' is not disjoint from 7"\ v3. Then the terminal vertex w’ of L’ is
t" which is the terminal vertex of 7. By Lemma 5.1.2 it follows that every linear subgraph L of T'x
whose initial vertex is v and whose terminal vertex is t; of I'x is an O-string.

By the induction hypothesis, there exists an O-string L’ of I” whose initial vertex is v and whose
terminal vertex w’ is a white terminal vertex of IV and L’ contains k > 0 edges with label 2. The
number k is minimal among all such O-strings. If L’ is disjoint from 7"\ v3 then L’ is disjoint from
T'. By remark 5.1.1, L' is an O-string in I'x that is disjoint from vg U st(b) UT; UTy. We assume L’

is not disjoint from 7"\ v3. Then the terminal vertex w’ of L’ is ¢’ which is the terminal vertex of T".
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By Lemma 5.1.2 there exists an O-string of I'xy whose initial vertex is v and whose terminal vertex

is t; of I'x with exactly k edges with label 2 for some i = 1, 2.

The dihedral group of order 2n will be denoted by D,,.

Lemma 5.1.7. Let X be a pruned trivalent 2-stratifold where I'x has a label 2 for all edges incident
to a terminal white vertex of genus 0. Let I'x have all white vertices of genus 0, all terminal vertices
are white, and there is exactly one white vertex v” of degree 3 while all other white vertices are of
degree < 2. Let e; be the edges incident to v" for 1 <i < 3. Let L' be a linear subgraph of T'x whose
initial vertex is v", whose terminal vertex w is a terminal vertex of I'x, and L' contains e;. If m (X)

1s finite then all of the following hold:
1. The linear subgraph L' is an O-string.
2. There exists an L' fori=1,2 of 'y that contains only one edge labelled with 2.

3. The fundamental group m(X) is isomorphic to Dox, where the integer k > 0 corresponds to
the minimal number of edges with label 2 in all L? of T'x.

Proof. By theorem 4.3.7 the fundamental group 71 (X) is finite implies that I'x is a tree that contains
neither a horned tree disjoint from v” nor a horned tree with v” as a terminal vertex.

Suppose that I'x has no black vertices of degree 3. Define L; to be the linear subgraph whose
initial vertex is v”, whose terminal vertex is a terminal vertex of I'x, and L; contains the edge e;. If
at least one L; contains a horned tree then Xr has infinite fundamental group. Then each L; is a
p-string of length 2p;. The 2-stratifold Xt has fundamental group that can be represented with the
following presentation:

Cop1 . 9p2 . 9p3 .
{c1,e2,c3:¢7 =1,¢5 =1,¢5 =1,c1c0c3 = 1}.

The presentation is an F-group. Each p; > 0 and so the presentation is a finite non-cyclic
F-group. Therefore (without a loss of generality) p; = 1, po = 1, and p3 > 1 and 71(Xr) is the
dihedral group Daors. It follows that Ly, Lo are p-strings of length 2 and L3 is a p-string of length
2ps3.

Suppose that I'x contains n > 0 black vertices of degree 3. Let b be a black vertex of degree 3

that is adjacent to the vertices vy, v9, v3 such that v; is the initial vertex of a terminal linear subgraph
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T; for i = 1,2. (The black vertex b is an outermost such vertex, in that at least two components of
I'x \ st(b) contains only vertices with degree < 3.) If at least one T; contains a horned tree then Xp
has infinite fundamental group. Then T} and 75 are terminal p-strings. Let the terminal vertices of
T; which are terminal vertices of I'x be called t; for i = 1,2. Apply operation B1 to st(b) UT; U T5.
The resulting graph I has n — 1 black vertices of degree 3. Let the associated p-string be called T”
and let the terminal vertex of 77 and I be called t'.

By the induction hypothesis, 71 (Xyv) is isomorphic to Do for k > 0. The fundamental group
m1(Xr) is isomorphic to m (Xyv).

Let L' be a linear subgraph of TV whose initial vertex is v” and whose terminal vertex w’ is a
terminal vertex of I''. By the induction hypothesis L’ is an O-string. If L’ is disjoint from 7"\ v3 then
L’ is disjoint from 7”. By remark 5.1.1, L’ is an O-string in Iy that is disjoint from v3Ust(b)UT) UT5.
We assume L' is not disjoint from 7”7\ v3. Then the terminal vertex w’ of L’ is ¢ which is the
terminal vertex of 77. By Lemma 5.1.2 it follows that every linear subgraph L of I'y whose initial
vertex is v” and whose terminal vertex is t; of I'x is an O-string.

By the induction hypothesis, there exists an O-string L whose initial vertex is v” and whose
terminal vertex is a terminal vertex of IV with exactly p; edges with label 2 where p; =1 if i =1,2
and p; > 1if i = 3. If L] is disjoint from 7"\ v3 then L} is disjoint from 7. By remark 5.1.1, L/
is an O-string in I'x that is disjoint from vz U st(b) UT; U Th. We assume L/ is not disjoint from
T’ \ vs. Then the terminal vertex w’ of L' is ¢ which is the terminal vertex of 7. By Lemma 5.1.2
there exists an O-string of I'x whose initial vertex is v” and whose terminal vertex is t; of I'y with

exactly p; edges with label 2 for some i = 1, 2.

5.2 Trivalent 2-stratifolds with finite fundamental group

For a trivalent bicolored graph I', we now describe the necessary and sufficient conditions on I'
for 1 (X1) to be finite where I' = T'x.

In this section, we assume that I' is a tree that satisfies one of the following conditions:

1. The graph T' has exactly one black terminal vertex and all white vertices are genus 0.

2. The graph I' has exactly one white vertex of genus —1 while all other white vertices are genus

0 and all terminal vertices are white.
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3. The graph T contains all white vertices of genus 0 and all terminal vertices are white.

These are necessary conditions by lemma 2.3.3 for Xr to have finite fundamental group. A
2-stratifold Xt with a graph I' that contains a vertex of genus —1 or a black terminal vertex is never
1-connected. For graphs I' with all white terminal vertices and all white vertices of genus 0, the
associated 2-stratifold X can be 1-connected. Throughout this section we assume that Xp
is not 1-connected and Xr is pruned.

Core-reduced graphs were defined in [10] for trivalent graphs I' that are homotopically equivalent
to S'. In summary nontrivial core-reduced graphs I'c are pruned subgraphs of I'y that carry the
fundamental group information of Xp. We adapt the definition for when T" is a tree. An efficient
algorithm to decide whether or not a trivalent 2-stratifold is 1-connected was given in [5]. We will
implicitly use this algorithm in our definition of a core reduced graph.

A vertex of I with degree > 2 will be called a branch vertex. Let by be a black branch vertex
of distance 1 from a terminal vertex wg and let C7,Cs be subgraphs of I' corresponding to the
components of T'\ (st(bg) Uwp). Then such a black branch vertex by is an called outermost if at
least one C; contains no black branch vertices distance 1 to a terminal vertex. We refer to a labelled
graph I' as 1-connected if X is 1-connected.

If the graph I' does not contain a black branch vertex of distance 1 to a terminal vertex then
I" is core-reduced. If I' contains a black branch vertex of distance 1 to a terminal vertex we let
B = {bo1,...,bor} be the set of all outermost black branch vertices where each by; has distance 1
from a terminal vertex wp;. Choose a component of I\ (st(bg;) Uwg;) corresponding to a subgraph C;
of I" that does not contain a black branch vertex of distance 1 to a terminal vertex to be denoted Tp;.
If there exists at least two components Tj; that are not 1-connected let I'g = (). If one component
Toi is not 1-connected and '\ (Tp; U st(bg;) U wp;) is not 1-connected then let Ty = 0. If each Ty; is
1-connected and I'\ (Tp; Ust(bo;) Uwop;) is not 1-connected then let Ty = T'\ (I st(bo;) U woi U U Toi)-
If exactly one component Tp; is not 1-connected and I' \ (Tp; U (st(bg;) U wp;) is 1-connected then
let I'fy = Tp,. If I} is pruned then let 'y = I, otherwise let I'g be the pruned I'j. For 'y # 0, we
have that 1 (Xt) = 71(Xr,) since 7~ 1(b;o) is contractible in Xp. For T'g = ), we have that 71 (XT)
is infinite.

By induction, If I';,_; contains a black branch vertex of distance 1 to a terminal vertex we let

Bn-1={bp-11,--.,bp—14, ,} be the set of all outermost black branch vertices where each b,_1 ;
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has distance 1 from a terminal vertex wy,—1,;. Choose a component of I';,_1 \ (st(bn—1,i) U wp—1,;)
corresponding to a subgraph Cj; of I',_; that does not contain a black branch vertex of distance 1 to
a terminal vertex to be denoted T;,—1 ;. If there exists at least two components 7T},_1; that are not
1-connected let ', = ). If one component 75,1 ; is not 1-connected and I'\ (75,1 ;Ust(by—1,;) Uwn—14)
is not 1-connected then let I';, = (). If each T;,—1 ; is 1-connected and I'\ (T5,—1,; U st(bp—1,i) Uwp—1,4)
is not 1-connected then let I/, = T'p,—1 \ (U st(bp—1:) UU wn-1,UJTn-1,). If exactly one component
Ty—1, is not 1-connected and I';,—q \ (T5,—1,; U st(bp—1) Uwy—1,) is 1-connected then let I}, = T,_1 ;.
If T}, is pruned the let T';, = I, otherwise let I';, be the pruned T7,.

We define our core reduced graph I'c of I as follows:

¢, if '), = 0 for some n > 0, otherwise
I'c =TI, for the smallest n such that I',, does not contain a black branch vertex of
distance 1 to a terminal vertex

Figure 5.3: A trivalent graph I' and its core reduced graph I'c. The core reduced graph is
composed of the red edge along with the incident vertices.

For a core reduced graph I'c of I' where I'c # (), we have that 71 (Xt) = 71 (X, ). While if
I'c = () then 7 (Xr) is infinite.

A pseudo-projective plane of order k > 2 is a 2-stratifold that is obtained by attaching a
2-cell to a circle by the map z — 2*. A pseudo-projective plane of order 3 is a trivalent 2-stratifold.
A model of such a space can be seen in figure 5.4. The bipartite labelled graph of a pseudo-projective

plane of order 3 is the core reduced graph seen in figure 5.3.
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Figure 5.4: A pseudo-projective plane of order 3 obtained by identifying the arcs on the
boundary of a disk and a regular neighborhood of the singular curve.

Corollary 5.2.1. Let I' be a bicolored pruned trivalent graph such that Xt is a trivalent 2-stratifold
that has finite (nontrivial) fundamental group. Let I'c be the core reduced graph of I'. Then T is one

of the cases below:

1. T has exactly one black terminal vertex and all white vertices are genus 0. Then the graph I'c
contains exactly one black terminal vertex, all white vertices are genus 0, and either all edges
of I'c incident to a terminal white vertex have label 2 or X is a pseudo-projective plane of

order 3.

2. T has exactly one white vertex of genus —1 while all other white vertices are genus 0 and all
terminal vertices are white. Then the graph I'c either contains one white vertex of genus —1
while all other white vertices are genus 0, all terminal vertices are white, and all edges of T'c

incident to a terminal white vertex of genus 0 have label 2 or Xr, is a projective plane.

3. T has all white terminal vertices and white vertices are of genus 0. Then the graph I'c contains
all white vertices of genus 0, all terminal vertices are white, and all edges of I'c incident to a

terminal vertex have label 2.

Proof. The graph I'c is a pruned subgraph of I'. Since 7(Xr) is finite, ' # 0.

(1.) T'c contains at most one black terminal vertex and all white vertices are of genus 0. Suppose
that I'c does not contain a black terminal vertex. If I" is not 1-connected then I'¢ is not 1-connected.
Let I'g be the subgraph of I' corresponding to I'c. Attach to each black vertex that is not the
terminal black vertex and is not contained in the subgraph 'y of I a white vertex of genus 0 with
edge label 1. Then there is an epimorphism from m;(Xt) — Zs3 * m1(Xr,). The graph I'c contains a

black terminal vertex.
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The graph I'c contains no terminal ¢-strings and no black branch vertex of distance 1 to a
terminal vertex. Let v be a white terminal vertex of I'c. If v is not contained in a terminal p-string
then v is adjacent to the black terminal vertex and Xt is a pseudo-projective plane of order 3.
Otherwise v is contained in a terminal p-string and the edge label incident to v is 2.

(2.) T'¢ contains at most one white vertex of genus —1 while all other vertices are genus 0 and
all terminal vertices are white. Suppose that I'c does not contain a white vertex of genus —1. If I’
is not 1-connected then I'c is not 1-connected. Let I'g be the subgraph of I' corresponding to I'c.
Attach to each black vertex not contained in the subgraph I'g of I" a white vertex of genus 0 with
edge label 1. Then there is an epimorphism from 7 (Xr) — Zg x 71 (X1, ). The graph I'c contains
the white vertex of genus —1.

The graph I'c contains no terminal ¢-strings and no black branch vertex of distance 1 to a
terminal vertex. If I'c contains a white terminal vertex v of genus 0 then v is contained in a terminal
p-string and the edge label incident to v is 2. If I'c contains no white terminal vertices of genus 0
then Xt is a projective plane.

(3.) T¢ contains all white terminal vertices and all white vertices are of genus 0. The graph I'c
contains no terminal ¢g-strings and no black branch vertex of distance 1 to a terminal vertex. If v is

a white terminal vertex of genus 0 then the incident edge label is 2.

We determine the finite 2-stratifold groups as this will simplify our classification results.

Theorem 5.2.2. Let I" be a bicolored pruned trivalent graph. If Xt has finite fundamental group

then m(Xr) is isomorphic to either Zok+1, Zsyor, Dor1 where k > 0.

Proof. Let I'c be the core reduced graph of T.

Suppose that I' has exactly one black terminal vertex and all white vertices are genus 0. By
corollary 5.2.1, the graph I'c contains exactly one black terminal vertex, all white vertices are
genus 0, and either all edges of I'c incident to a terminal white vertex have label 2 or X1 is a
pseudo-projective plane of order 3. If Xt is a pseudo-projective plane of order 3 then m(Xr) = Zs.
Otherwise by theorem 4.3.7, I'c has all white vertices of degree < 2, and contains no horned tree.
Let L be a linear subgraph of I'c whose initial vertex v is the white vertex adjacent to the black

terminal vertex and whose terminal vertex w is a white terminal vertex of I'c. Then by lemma
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5.1.6, L is an O-string, m1(Xr,,) = Zg,or where k > 0, and the integer k corresponds to the minimal
number of edges with label 2 in all L whose initial vertex v is the white vertex adjacent to the black
terminal vertex and whose terminal vertex w is a white terminal vertex of I'¢.

Suppose that ' has exactly one white vertex of genus —1 while all other white vertices are genus
0 and all terminal vertices are white. By corollary 5.2.1, the graph I'¢ either contains one white
vertex of genus —1 while all other white vertices are genus 0, all terminal vertices are white, and all
edges of I'c incident to a terminal white vertex of genus 0 have label 2 or X1, is a projective plane.
If Xt is a projective plane then 71 (Xt) = Zy. Otherwise by theorem 4.3.7, the white vertex of
genus —1 of I'¢ is terminal and has incident edge label 1, I'c contains all white vertices of degree
< 2, and I'¢ contains no horned tree. Let L be a linear subgraph of I'c whose initial vertex v is the
white vertex of genus —1 and whose terminal vertex w is a white terminal vertex of I'c where w # v.
Then by lemma 5.1.5, L is an O-string, 71 (X)) = Zyx where k > 1, and the integer k corresponds
to the minimal number of edges with label 2 in all L whose initial vertex v is the white vertex of
genus —1 and whose terminal vertex w is a white terminal vertex of I'c.

Suppose that I' contains all white vertices of genus 0 and all terminal vertices are white. By
corollary 5.2.1, I'c contains all white vertices of genus 0, all terminal vertices are white and all edges
of I'¢ incident to a terminal white vertex has label 2. By theorem 4.3.7, either I'c has all white
vertices of degree < 2 and contains at most one horned tree or I'c has exactly one white vertex v”
of degree 3 while all other white vertices are of degree < 2 and contains no horned tree Hr such
that either v” and Hy are disjoint or v” is a terminal vertex of Hy. We now look at these two cases.

Suppose that I'c has all white vertices of degree < 2 and contains at most one horned tree. By
lemma 5.1.3, I'c contains a horned tree Hr and if L is a linear subgraph of I'c whose initial vertex
v is a terminal vertex of Hr and whose terminal vertex w is a white terminal vertex of I'c where
LN Hr =vand w # v then L is an O-string. Further by lemma 5.1.3, 71 (X1, ) = Zok+1 where
the integer k = 0 if Hy contains a terminal vertex of I'x and k > 0 otherwise. The integer k£ > 0
corresponds to the minimal number of edges with label 2 in all linear subgraphs L whose initial
vertex v is a terminal vertex of Hy and whose terminal vertex w is a terminal vertex of I'xy where
LNHpr =v and w # v.

Suppose that I'c has exactly one white vertex v” of degree 3 while all other white vertices are

of degree < 3, and contains no horned tree Hr such that either v” and Hp are disjoint or v” is a

60



terminal vertex of Hy. Let e; be the edges incident to v” for 1 < i < 3. Let L! be a linear subgraph
of I'x whose initial vertex is v”, whose terminal vertex w is a terminal vertex of 'y, and L’ contains
e;. By lemma 5.1.7, the linear subgraph L! is an O-string, there exists an L’ for i = 1,2 of I'x that
contains only one edge labelled with 2, and the fundamental group (X)) is isomorphic to Dy,

where the integer k£ > 0 corresponds to the minimal number of edges with label 2 in all L? of I'x.

O
We now state our main classification results.

Corollary 5.2.3. Let T' be a bicolored pruned trivalent graph. Then 71 (Xr) = Zs if and only if the
following hold:

1. The graph T is a tree that has exactly one black terminal vertex, all white vertices are genus 0;

2. The core reduced graph T'c # 0, T'c is the core reduced graph of Fig. 4.3, and Xr, is a

pseudo-projective plane of order 3.

Proof. Suppose 71(Xt) = Zs. Since m(Xr) is finite the result follows from the proof of theorem
5.2.2. Suppose that condition 1. and 2. holds. Then 71 (Xt ) = Z3z and 7 (Xr) = m1(Xr,,).
O]

Corollary 5.2.4. Let I" be a bicolored pruned trivalent graph. Then m1(Xt) = Za,or for k > 0 if
and only if the following hold:

1. The graph T is a tree that has exactly one black terminal vertex and all white vertices are genus
0;
2. The core reduced graph T'c # () and all edges of T'c incident to a terminal white vertex of genus

0 have label 2;

3. The graph I'c contains exactly one black terminal vertex, all white vertices are genus 0 and

have degree < 2, and the graph I'c contains no horned trees;

4. Let L be an linear subgraph of I'c whose initial verter v is the white vertex adjacent to the
black terminal vertex and whose terminal vertex w is a white terminal vertexr of I'c. Then L is
an O-string that contains r > k edges with label 2 and there exists at least one L that contains
k edges with label 2.
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Proof. Suppose m(Xr) = Zg,or for k > 0. Since m1(Xt) is finite the result follows from the proof of
theorem 5.2.2.
Suppose that conditions 1. thru 4. holds. By the proof of lemma 5.1.6, m (Xt ) = Zs,or for
k>0 and m (Xr) = m(Xr,,)-
O

Corollary 5.2.5. Let T' be a bicolored pruned trivalent graph. Then 71(Xr) & Zo for if and only if
either 1.(a)-1.(b) or 2.(a)-2.(e) are satisfied.
1. (a) The graph T' has exactly one white vertex of genus —1 while all other white vertices are
genus 0 and all terminal vertices are white;
(b) The core reduced graph T'c # 0, T is a single white vertex of genus —1 with no edges,
and Xr., is a projective plane;
2. (a) The graph T contains all white vertices of genus 0 and all terminal vertices are white

(b) The core reduced graph T # () and all edges of T incident to a terminal vertex of genus
0 have label 2;

(¢) The core reduced I'c contains all white vertices of genus 0 and all white vertices are of

degree < 2, all terminal vertices are white, and I'c contains a horned tree Hr.

(d) If L is a linear subgraph of I'c whose initial vertexr v is a terminal vertex of Hy and
whose terminal vertex w is a terminal vertexr of I'c where LN Hp = v and w # v then L

is an O-string.

(e) The horned tree Hy contains a terminal verter of T'c

Proof. Suppose m(Xr) = Zs. Since m1(Xr) is finite the result follows from the proof of theorem
5.2.2.
Suppose that conditions 2.(a)-2.(e) holds. Then by the proof of lemma 5.1.3, 71 (Xr,,) = Zg and
m1(Xr) = 71 (X))
Suppose that condition 1.(a)-1.(b) holds. Then m;(Xr,,) = Z and m1(Xr) = m1(X1,,).
g

Corollary 5.2.6. Let I" be a bicolored pruned trivalent graph. Then 71(Xr) = Zoks1 for k > 0 if
and only if either 1.(a)-(d) or 2.(a)-(d) are satisfied.

1. (a) The graph T has exactly one white vertex of genus —1 while all other white vertices are

genus 0 and all terminal vertices are white
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(b) The core reduced graph T # () and all edges of T'¢ incident to a terminal vertex of genus
0 have label 2;

(¢) The core subgraph U'c: has exactly one white terminal vertex of genus —1 with incident
edge label 1 while all other white vertices are genus 0, all white vertices are of degree < 2

and all terminal vertices are white, and I'c contains no horned trees.

(d) Let L be a linear subgraph of I'c whose initial vertez v is the white vertex of genus —1 and
whose terminal vertexr w is a terminal vertexr of U'c where w # v. Then L is an O-string
that contains r > k edges with label 2 and there exists at least one L that contains k edges
with label 2.

2. (a) The graph T' contains all white vertices of genus 0 and all terminal vertices are white

(b) The core reduced graph T # () and all edges of T incident to a terminal vertex of genus
0 have label 2;

(¢) The core reduced graph T'c contains all white vertices of genus 0 and are of degree < 2,

all terminal vertices are white, and I'c contains a horned tree Hr.

(d) Let L be a linear subgraph of T'c whose initial vertex v is a terminal vertex of Hr and
whose terminal vertex w is a terminal vertex of U'c where LN Hy = v and w # v. Then
L is an O-string that contains r > k edges with label 2 and there exists at least one L that

contains k edges with label 2.

Proof. Suppose 7(X1) = Zgk+1. Since m1(Xr) is finite the result follows from the proof of theorem
5.2.2.

Suppose that either conditions 1.(a)-1.(d) or 2.(a)-2.(d) holds. Then by the proof of lemma 5.1.5
or lemma 5.1.3 respectively, m1(Xt,,) = Zgr+1 and 71 (X1) = m1(Xp,).

O
Corollary 5.2.7. Let T" be a bicolored pruned trivalent graph. Then 71 (Xr) = Dort1 for k > 0 if
and only if the following hold:
1. The graph T is a tree that has all white terminal vertices and white vertices are of genus 0

2. The core reduced graph T'c # () and all edges of T'c incident to a terminal white vertex of genus
0 have label 2;

3. The core reduced graph I'c has all white vertices of genus 0 and all terminal vertices are white,
there is exactly one white vertex v" of degree 3 while all other white vertices are of degree < 2,
and T'c contains no horned tree Hy such that either v and Hy are disjoint or v" is a terminal

vertex of Hrp
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4. Let L' be a linear subgraph of T'c whose initial vertex is v, whose terminal vertex w is a
terminal vertex of I, and L' contains e;. The linear subgraph L' is an O-string, there exists
an L* fori=1,2 of ¢ that contains only one edge labelled with 2, and all L? contains r > k
edges with label 2 and there exists at least one L that contains k edges with label 2.

Proof. Suppose m(Xr) = Dokt for k > 0. Since 71 (Xr) is finite the result follows from the proof of

theorem 5.2.2.
Suppose that either conditions 1-4 holds. Then by the proof of lemma 5.1.7, 71 (X1, ) = Dok+1

and 7T1(XF) = 7T1(XFC>.
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Figure 5.5: Each graph above is core-reduced with no black branch vertices and the boxed
in subgraphs are p-strings. Graph 1. satisfies the conditions of lemma 5.2.4. Graph 2.
satisfies the conditions of lemma 5.2.6. Graph 3. satisfies the conditions of lemma 5.2.5.
Graph 4. satisfies the conditions of lemma 5.2.7.
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Figure 5.6: A trivalent graph I' and its core reduced graph I'c that satisfies the conditions
of corollary 5.2.4. The core reduced graph is composed of the red edges along with incident
vertices.
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Figure 5.7: A trivalent graph I' and its core reduced graph I'c that satisfies the first set of
conditions of corollary 5.2.5. The core reduced graph of I" is unique and is composed of the
red vertex.
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Figure 5.8: A trivalent graph I' and its core reduced graph I'c that satisfies the second
set of conditions of corollary 5.2.5. The core reduced graph is composed of the red edges
along with incident vertices.
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Figure 5.9: A trivalent graph I' and its core reduced graph I'c that satisfies the conditions
of corollary 5.2.6. The core reduced graph is composed of the red edges along with incident
vertices.
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Figure 5.10: A trivalent graph I' and its core reduced graph I'c that satisfies the conditions
of corollary 5.2.7. The core reduced graph is composed of the red edges along with incident
vertices.
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CHAPTER 6

TRIVALENT 2-STRATIFOLDS WITH ABELIAN
FUNDAMENTAL GROUP

The finite abelian 2-stratifold groups are the cyclic groups and Zo X Zs. A classification of all
trivalent labelled graphs that represent trivalent 2-stratifolds with finite abelian fundamental group
was given in the previous chapter. The infinite abelian 2-stratifold groups are Z, Z X Z, and Z X Z, .
A classification of all trivalent labelled graphs that represent trivalent 2-stratifolds with fundamental
group Z was given in [10]. The main goal of this chapter is to find necessary and sufficient conditions
on the graph I'x of a trivalent 2-stratifold X so that 71 (Xt) is either Z X Z or Z X Zn,.

The main work of this chapter will be to obtain a classification of trivalent labelled graphs that
represent trivalent 2-stratifolds with w1 (Xp) = Z x Z,, for m > 1. This classification is given by
theorem 6.3.3. This will lead to a classification of trivalent labelled graphs that represent trivalent

2-stratifolds with 71 (X1) = Z x Z.

6.1 Properties of trivalent 2-stratifolds with abelian fundamental
group

First, we review lemma 4 from [10]. Then we state a lemma that follows from the proof of lemma
5 from [10]. These statements will be used to find further necessary conditions on the graph I'x of a

trivalent 2-stratifold X so that m1(Xr) = Z X Zy, for m > 1.

Lemma 6.1.1. Let T'y be a labelled graph where b is a black vertex of degree d > 2 such that r—(b)
is contractible in Xp. Then m1(X) = m (X, ) *... %7 (X, ) *x F where 'y, ..., T, are the components

of I'x \ st(b) and F, is the free group of rank r = d — n.
Lemma 6.1.2. If X is a 2-stratifold where T'x is homeomorphic to S* then m1(X) is nonabelian.
Finally we note the following which also follows from the proof of lemma 5 from [10].

Lemma 6.1.3. Let X be a 2-stratifold. If 71(X) = Z X Zy, for m > 1 then at least one black vertex

belonging to the cycle of I'x is a branch vertex.
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Lemmas 6.1.2 and 6.1.3 give the following improvement of lemma 3.4.5.

Corollary 6.1.4. Let X be a 2-stratifold. If m(X) = Z X Zy, for m > 1 then I'x is homotopy
equivalent to S' but not homeomorphic to S*, all white vertices are genus 0 and all terminal vertices

are white, and at least one black vertex belonging to the cycle of I'x is a branch vertez.

For I'x homotopy equivalent to S', we need additional information to determine the homeomor-
phism class of X. This additional information is an evaluation on I'x and was introduced in [10].
We now review this evaluation.

Let k be a cocycle of H(I'x,Zs) = Hom(H1(T'x),Zs) where Zy = {—1,1}. Construct an
evaluation A as follows: take a maximal tree T of I'y and let A\(e) = 1 if e is an edge contained
in T and let A(e) = k([c]) if e is the edge of T'x \ T" and ¢ is the simple cycle of T'U e. With this
evaluation, the graph I'y along with a cocycle s uniquely determine Xr. In particular, there is at
most one (arbitrarily chosen) edge e in the simple closed cycle of I'x with A(e) = —1.

The graph I'x is nonorientable if there exists one edge e in the simple closed cycle of 'y with
A(e) = —1. Otherwise, the graph I'x is called orientable if all edges e of I'x have A(e) = 1. It will
be assumed that a graph I'x can either be orientable or nonorientable if not specified.

For I'x that is homotopy equivalent to S', we refer to the subgraph that is homeomorphic to S!

as the cycle C of I'x.

6.2 Graphs of trivalent 2-stratifolds with abelian fundamental
group

In this section, we find further necessary conditions on I'x so that m1(Xr) = Z X Z,, where
m > 1. Then for Xt whose associated bipartite labelled graphs I'x satisfy these necessary conditions,
we show that if 7 (Xr) is abelian then 71 (Xp) & Z X Zor where k > 1. This is done in theorem
6.2.7.

In this section, it is assumed, unless otherwise noted, that all 2-stratifolds X have an associated
graph 'y that is homotopy equivalent to S' but not homeomorphic to S', all white
vertices are genus (0 and all terminal vertices are white, and at least one black vertex
belonging to the cycle C of I'y is a branch vertex. By corollary 6.1.4, these are necessary

conditions on X for X to have fundamental group Z x Z,, where m > 1.
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Corollary 6.2.1. Let X be a pruned trivalent 2-stratifold. If the fundamental group of X is Z X Zn,
for n > 1 then the cycle C of T'x contains no black branch vertex b where r=1(b) is contractible in

Xr.

Proof. Suppose that the cycle C of I'x contains a black branch vertex b where r~!(b) is contractible
in Xr. Then I'x \ st(b) contains two components I'; and I's. By lemma 6.1.1, if at least one X,
has nontrivial fundamental group then 71 (X) is nonabelian and if both Xp, and Xp, are simply

connected then m (X) = Z. O

Lemma 6.2.2. Let X be a pruned trivalent 2-stratifold where the graph I'x has a label 2 for all
edges incident to a terminal vertex. Then X has nonabelian fundamental group if I'x contains at

least one of the following:
1. a horned tree;

2. a white vertex w of degree > 2 contained in I'x \ C.

Proof. (1.) Suppose that I'x contains a horned tree H. Let T be a maximal tree of I" that contains
H. Let the white vertex and the black vertex incident to e be called w and b respectively where e is
the edge of I'x that is not contained in 7". Then b is disjoint from H. Attach to the black vertex b a
white vertex of genus 0 with edge label 1. The black vertex b in resulting graph I corresponds to
the contractible curve r~1(b) in Xv. Let the components of I \ st(b) be called T'j and I'y, where H
is contained in I'}. Then XFII has nontrivial fundamental group. By lemma 6.1.1, the fundamental
group of I is isomorphic to 71 (X ) x 71(Xpy) x Z. Therefore 71 (Xr) surjects onto a nonabelian
group.

(2.) Suppose that w is a white vertex of degree 3 contained in I'x \ C. Let L be the linear
subgraph of I'y with terminal vertices w and v where v is contained in C such that LNC = v.
Let e be the edge incident to w that is contained in L. Allow P to be the subgraph of I'x that
corresponds to the component of I'x \ {e;} that contains w. If Iy is pruned at P, the resulting
graph P’ is a tree that contains all white terminal vertices with incident edge label 2. Then X ps has
nontrivial fundamental group by lemma 4.3.2. Attach white vertices of genus 0 with edge label 1 to
all black vertices contained not contained in P. Then 71 (X) surjects onto w1 (Xpr) = w1 (Xpr) x Z.

O
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Figure 6.1: All R; are p-strings.The graph I' is an echinus graph.
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We introduce some notation that will be used throughout the section.

Notation 6.2.1. Consider X to be a pruned trivalent 2-stratifold where I'x has a label 2 for all
edges incident to a terminal vertex.

For a fized orientation of C, the successive black branch vertices will be denoted b, ... bl where
n > 1. The adjacent white vertex to b not contained in C will be denoted v). The subgraphs
of T'x corresponding to the components of T'x \ (C'UJst(b))) will be denoted Ry, ..., R, where

R; contains the white vertex v. The successive subgraphs corresponding to the components of

Ix \ (URiUst(b)) will be denoted Cs;.

If L is a 1-connected trivalent 2-stratifold where I'z, is a linear graph then I';, contains no horned
trees. Then I'y, is either a p-string, a ¢-string, or a p-string followed by a g¢-string. We define L|p, ¢
to be a linear graph consisting of a p-string of length 2p > 0 followed by a ¢-string of length 2¢ > 0.
If both the p-string and ¢-string contained in L[p, ¢] have length 0 then L[p, g| is a white vertex of
genus 0.

Let T'x satisfy the conditions of corollary 6.1.4. Further let 'y have a label 2 for all edges
incident to a terminal vertex and contain only white vertices of degree < 2. By lemma 6.2.2, if
m1(X) = Z X Zy, then I'x contains no horned trees. Each C; is a linear subgraph that has white

terminal vertices and contains no horned trees. Then C; is a Lp, q] graph.

Lemma 6.2.3. Let X be a pruned trivalent 2-stratifold where I'x has a label 2 for all edges incident
to a terminal vertex. If m1(X) is abelian then the following hold:

1. Let L be a linear subgraph of I'x contained in R; whose initial vertezx is v) and whose terminal

vertez is a terminal vertex of I'x where LNC = 0. Then L is an O-string.

2. Let k > 0 be the minimum number of edges with label 2 in all linear subgraphs L contained
in R; whose initial vertex is v and whose terminal vertex is a terminal vertex of I'x where
LNC =10. Let TV be obtained from T'x by replacing R; with a p-string of length 2k. Then
m(Xr) = (X).

Proof. By lemma 6.2.2, all white vertices in R; are of degree < 2.
(1.) Let L be a linear subgraph of R; whose initial vertex is v/ and whose terminal vertex v is a
terminal vertex of I'x where L N C' = (). Suppose L is not an O-string. Order the vertices of L as

wy — by — ... — by — w, so that the initial vertex w; = v} and w, = v.
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Then either the subgraph w,_s — b,_1 — w,_1 has successive edges with label m,_; = 2 and
ny—1 = 1 or there exists a subgraph w;_1 — b; — w; that has successive edges with label m; = 2 and
n; =1 where 1 < j <r —1 and for all 7 < k < r the successive labels my, ny, are either mj, = 1 and
ng = 2 or my = 1 and ng = 1. If the subgraph w,_o — b._1 — w,_1 of L has successive edge labels
my_1 = 2 and n,_1 = 1 then I'x contains a horned tree.

Suppose the subgraph w;_1 — b; — w; has successive edges with label m; = 2 and n; = 1 where
1 < j<r—1and for all j < k < r the successive labels my, n; are either my = 1 and ny = 2 or
my = 1 and n, = 1. Let e be the edge incident to w;_1 that is not incident to b;. Let K be the
subgraph of Iy that corresponds to the component of I'x \ {e} that contains w;_;. If I'x is pruned
at K, the resulting graph K’ is a tree that contains all white terminal vertices with incident edge
label 2. By lemma 4.3.2, 71 (Xg-) is nontrivial. For the graph I'x, attach a white vertex of genus 0
with an edge of label 1 for all black vertices not contained in K. Then there is an epimorphism from
m(X) = m(Xgr) * Z.

(2.) Suppose that R; contains no black vertices of degree 3. Then R; is a p-string otherwise
m1(Xr) is nonabelian.

Suppose that R; contains 1 black vertex of degree 3. Let b be the black vertex of degree 3
contained in R; that is adjacent to the vertices v1, v2, v3 such that v; is the initial vertex of a terminal
linear subgraph 7} for j = 1,2. The linear subgraphs 77,75 are p-strings. Let the terminal vertex of
T; be called t;. The linear subgraph L; of I'x with initial vertex v) and terminal vertex t; is an
O-string with k; > 0 edges with label 2. Apply operation B1 to st(b) UT; UT5 and let the resulting
graph be IV, In the graph I, let the associated p-string be called T” and let the terminal vertex of
T" and I be called '. The linear subgraph L’ of I with initial vertex is v] and terminal vertex ¢’ is
a p-string of length 2k > 0 where k = min{k;, k2}. The fundamental group 71 (Xr) is isomorphic to
1 (X1).

Suppose that R; contains n > 1 black vertices of degree 3. Let b be the black vertex of degree
3 contained in R; that is adjacent to the vertices vy, v2,v3 such that v; is the initial vertex of a
terminal linear subgraph T} for j = 1,2. Then the linear subgraph 74,75 are p-strings. Let the
terminal vertex of T} be called ¢;. Apply operation B1 to st(b) U1y UT5 and let the resulting graph
be I''. Let R] of I be the subgraph that corresponds to R; in I'. The fundamental group m(Xr) is

isomorphic to 1 (Xp).
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The linear subgraph L; of I'x with initial vertex v/ and terminal vertex ¢; is an O-string with
k;j > 0 edges with label 2. In the graph I", let the associated p-string be called 7" and let the
terminal vertex of 7" and I be called ¢. The linear subgraph L’ of I with initial vertex is v] and
terminal vertex ¢’ is an O-string that contains k > 0 edges with label 2 where k = min{ki, k2}.
There exists an O-string O contained in R; whose initial vertex is v/ and whose terminal vertex
is a terminal vertex of I'y where the number of edges k&’ with label 2 is minimal. If O’ is disjoint
from st(b) UT; U T5 then O is contained in R; of I'V. If O’ is not disjoint from st(b) U Ty U T, then
L’ has k = k' edges with label 2.
O

An echinus graph E = E|[p1,q1,71;...;Pn,qn, ) is a trivalent labelled graph I' with the

following properties:
1. T is homotopy equivalent to S! but not homeomorphic to S!.
2. All vertices of T" are of degree 2, except for n > 1 black branch vertices of the cycle C of T'.
3. Each C; is the linear graph L[p;, ¢;] with p;,¢; > 0fori=1,... n.
4. Each R; is a p-string of length 2r; >0 fori=1,...,n.

An example of an echinus graph is seen in figure 6.1. For an echinus graph E[p1,q1,71; - - - ; Pn, @n, Tn]

the fundamental group of X has the following presentation:

{bl,...,bn,t:bg” =1,07" =0, 2t =02 =1, ni=1,...,n—1}

where b; are the generators corresponding to the black branch vertex b/ of E for a fixed orientation
of C, e =1 if F is orientable and ¢ = —1 if E is nonorientable.

We show that attaching a p-string to echinus graph results in a 2-stratifold with nonabelian
fundamental group. This will be used to show that if m1(X) = Z x Z,, then I'x contains no white

vertices of degree > 2.

Lemma 6.2.4. Let E be an echinus graph where E = E[p1,q1,71; .. Pn, qn,Tn] and all r; = 1. Let
E be obtained from E by attaching the linear graph —b — w' with successive edge labels 1,2 to a

white vertex of C. Then X5 has nonabelian fundamental group.
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Proof. For the echinus graph there are three main cases to consider: p; + ...+ p, = 0 and
g+ +@g=0p+...4+ppF0and 1 +...+¢, #Z0;p1+...+pp,=0and g1 +...+¢g, #0 or
pr+...+pnF#0and ¢1 + ...+ g, = 0.

Case 1. Suppose that p; +...+p, =0and ¢ + ...+ ¢, =0 in E. Fix an orientation on C' of
E such that the white vertex of degree 3 is adjacent to b} and b//. The fundamental group of X

has the following presentation:

e _ 1 _ e 2 2 . o
{b1,.. . bnst,c1, 02,030 €1 = b1, bi = biy1,tht™ = ¢, b5, c5,c1c0¢3,5 = 1,...,n,i=1,...n -1}

where € = £1. Note that c2 = ¢, 1 Then this presentation is equivalent to the following:

. -1 _ 2 2 2
{ta 1,2, 3, tait = ¢, C7, €5, C3, C10203}-

The fundamental group of Xy is then an HNN extension of a dihedral group along proper
subgroups. By corollary 3.1.3, the group 71 (Xz) is nonabelian.

Case 2. Suppose that py +...+p, #0and g1 +...+ ¢ =0in E. If py + ...+ p; = 0 and
1+ ...+ gn # 0 then the same proof applies.) Let w be the white vertex of degree 3. Fix an
orientation on C of E such that w is contained in Cj.

Suppose that p; = 0. The fundamental group of Xz has the following presentation where the

generators are given by G = {b1,..., by, t,c1,c2,c3} and the relations, R, are given by the following:
R ={b1 = c1,ca = bo, b?pi = bi_:,_l,tbipntfl = b, ij,Cg, creaes,t=2,...,n—1,7=1,...,n}.

2Pn ,

There exists a p; > 0 for ¢ > 1 where either b?pi =bjyiorth; 't 1= b{. Since each b; has order

2 then b1 = 1 or by = 1 respectively. Then at least one of the following curves = (b7 ), r=1(b]) is
contractible. Let the black vertex contained in C' corresponding to the contractible curve be called b.
Let the components of E \ st(b) be called I'y and I'y. By lemma 6.1.1, the fundamental group of
X is isomorphic to 71 (X, ) * 71 (X1,) * Z. If 71(Xp,) and 71(X7,) are trivial then Xz has infinite
cyclic fundamental group. This contradicts Lemma 6 of [10] (If 71(X) = Z where I'x contains all

terminal edges with label 2 then I'x contains no white vertices of degree > 2). Therefore at least

one of m (Xt ), m1(Xry) is nontrivial. Then Xz has nonabelian fundamental group.
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Suppose that p1 > 0. Let wy be the white vertex adjacent to b} contained in C7 and let wy
be the white vertex adjacent to b contained in Cj. Then the linear subgraph with initial vertex
wp and terminal vertex w is a p-string of length 2p} and the linear subgraph with initial vertex w
and terminal vertex wy, is a p-string of length 2p/. The fundamental group of X has the following
presentation where the generators are G = {b1,...,bn,t,c1,c2,c3} and the relations, R, are given by

the following:

’3 i n , .
R = {b21—cl,c2 _bQ,b?p = b1, 102"t = 07,07, c3, creacs,i=2,...,n—1,5=1,...,n}

If there exists a p; > 0 for ¢ > 1 where either b?pi = bj41 or tbff"til = b{ then bj;1 =1or by =1.
Then at least one of the following curves r~1(b7,), 71 (bf) are contractible. By the previous case,
X5 has nonabelian fundamental group.

We assume all p; = 0 if ¢ # 1. Then the subgraph E of E has the given labellings F =
E[p1,0,1;0,0,1;...;0,0,1;0,0,1].

Case 2.a. Suppose w = wgp and p; > 0. The fundamental group of X has the following

presentation where the generators are given by G = {b1,...,bn,t,c1,c2,c3} and the relations are
given by:
R = {51—61,02 bg,b :bi_:,_l,tbnt_l: i,ij,C?;,,ClCQCg,j:1,...,n,’i:2,...,n—1}.

This presentation is equivalent to the following:

2P, 2 2n1H1 2
{t,c1,c2,¢3,:tc; 177 =cy,¢c1,¢5 037010263}

Then 71 (X 5) surjects onto the following nontrivial free product:

.2 2
{t,ca,c3,: c3,c5,cacs}.

Case 2.b Suppose w = wj, and p; > 0. The fundamental group of Xz has the following
presentation where the generators are given by G = {b1,...,bn,t,c1,c2,c3} and the relations are

given by:
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R = {b21 =c1,c0 = ba, by = b1, thpt™ 1—b1,b] ,63,016263,j:1,...,n,i:2,...,n—1}.

This presentation is equivalent to the following:

{t,c: o’}
Case 2.c. Suppose w is not adjacent to the black vertex b and is not adjacent to the black

vertex by and p; > 1. The fundamental group of X has the following presentation where the

generators are given by G = {by,...,by,t,c1,c2,c3} and the relations are given by:

R = {62p1 = 1,021 = ba,b; = biq1,thpt™ l—blabj 303?0102637]:17"'7n’7::2""’n_1}’

where pj > 0 and pf] > 0. This presentation is equivalent to the following:

{t,co:c3}).

Case 3. Suppose that p1 +...+p, #0and ¢; + ...+ g, # 0. We will show that the echinus
graph E has a 2-stratifold X that has a nonabelian fundamental group. Then it follows that X
has a nonabelian fundamental group.

Let E be the following echinus graph E = E[p1,q1,71;. .. Pn,dn,Tn]. By proposition 5 of [10],
m1(X ) is not isomorphic to Z. By assumption all r; = 1, if p; > 1 (or ¢; > 1) then replacing p; with 1
(resp. ¢; with 1) does not alter the group 71 (Xg). If p; = ¢; = 0 for some ¢ in 1 < ¢ < n —1 then the
echinus graph E' = E'[p1,q1,71; - - ;Di1, Gi—1,Ti—1; Di+15 Qi+1, Ti+1; - - - ; Pns dn, T has a 2-stratifold
Xpr where m1(Xp) = 11 (XE).

For the echinus graph E, we assume that there does not exist an i for 1 <4 < n — 1 such that
p; = q; = 0. We also assume that all p;, ¢; are either 0 or 1.

The fundamental group of X has the following presentation:

b1, .. bt b7 =107 =07 0 =3 =1, ni=1,...,n—1}.

If there exists a p; = 1 and ¢; = 0 then the generator ;11 = 1if ¢ =1,...,n — 1 or the generator

by = 1if i = n. Then either the curve »~ (b, ;) is contractible or the curve r~1(b{) is contractible.
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Let the black vertex contained in C' corresponding to the contractible curve be called b. Let the
components of I\ st(b) be called I} and I',. By lemma 6.1.1, the fundamental group of X is
isomorphic to m1 (X ) x 71 (Xpy ) * Z. At least one of m1(Xp ), m1 (Xt ) is nontrivial. Then Xp has
nonabelian fundamental group. Similarly, if there exists a p; = 0 and g; = 1 then X has nonabelian
fundamental group.

We assume that p; = 1 and ¢ = 1 for 1 < i <n—1. Then F = E[1,1,1;...51,1,1] or
E=FE[1,1,1;...;0,0,1]. If n > 2 then E contains a horned tree. If n =2 and E = E[1,1,1;1,1,1]
then E contains a horned tree. The last two cases are when F = E[1,1,1] or F = E[1,1,1;0,0, 1]

If E = FEJ[1,1,1] then the fundamental group of Xg has the following presentation:

{by,t: b3, th3t 1 = b3},

If E=FEJ[1,1,1;0,0,1] then the fundamental group of X has the following presentation:

{by, by, t: b2, b3, thot ™1 = b1 }.

This is equivalent to

{by,t: b3}

The next statement follows from case 3 of the previous lemma.

Corollary 6.2.5. Let E be an echinus graph where E = E[p1,q1,71; -+ Pns Gn, Tn)- If pr1+... 400 #0
and q1 + ...+ qn # 0 then m(Xg) is nonabelian.

Lemma 6.2.6. Let X be a pruned trivalent 2-stratifold where the graph I'x has a label 2 for all

edges incident to a terminal vertex. If m(X) = Z X Zy, for m > 1 then the following holds:
1. All white vertices of I'x contained in the cycle C are of degree < 2.

2. If b is a black vertex contained in the cycle C then it is a branch vertex.

Proof. By lemma 6.2.2 all white vertices in R; are of degree < 2.
(1.) Suppose that I"y contains a white vertex w of degree 3 such that w is contained in C' and

all other white vertices in I'x are of degree < 2.
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For each R; of I'x, let k; > 0 be the minimum number of edges with label 2 in all linear subgraphs
L contained in R; whose initial vertex is v/ and whose terminal vertex is a terminal vertex of I'x
where LN C = (. If R; is not a p-string of length 2k; then replace R; with a p-string of length 2k;.
Let the resulting graph be called I". Then m (X1) = 71 (X1).

Let e be the edge incident to w that is not contained in C' of IV. Let K be the subgraph of I"
that corresponds to the component of I \ e that contains the cycle C and let G be the subgraph of
I that corresponds to the component of I \ e that is disjoint from the cycle C. Prune I'V at K.
The resulting graph K’ is an echinus graph. Then each C; restricted to the subgraph K of I is a
linear L[p;, ¢;] graph.

Suppose the subgraph P = wUeUG of T has no black vertices of degree 3. Then P is a terminal
p-string of IV where PN C = w. Let T} be the p-string of length 2 contained in I with initial vertex
v where T; N C = (). Let L be the p-string of length 2 contained in I with initial vertex w where
LNC =w. Prune I at |JT; UJst(b;) UC U L and let the resulting graph be E. By lemma 6.2.4,
Xz has nonabelian fundamental group.

Suppose that P has k > 0 black vertices of degree 3. Let b be a black vertex of degree 3 contained
in P where b is adjacent to the vertices v1,v2,v3 such that v; is the initial vertex of a terminal
linear subgraph T} for ¢ = 1,2. If T} contains a horned tree then Xt has nonabelian fundamental
group. We assume that the terminal linear subgraphs 7} are p-strings. Apply operation B1 on
st(b) U Ty U Ty such that the resulting graph I contains a subgraph P’ with k& — 1 black vertices of
degree 3 and 71 (Xr/) = m (Xr~). By induction hypothesis, the result holds.

(2.) Assume all white vertices contained in C are of degree < 2. If X has abelian fundamental
group then each Cj is a L[p;, ¢;] graph. For each R;, let k; > 0 be the minimum number of edges
with label 2 in all linear subgraphs L contained in R; whose initial vertex is v] and whose terminal
vertex is a terminal vertex of I'y where L N C = (). If R; is not a p-string of length 2k; then replace
R; with a p-string of length 2k;. Let the resulting graph be called I". Then I" is an echinus graph
where IV = Elp1,q1,71; - - - ; Pny Gn, Tn) and m (X)) = w1 (X1).

Suppose that there is a black vertex contained in C of I that is not a branch vertex. Then
exactly one of the following cases occur: p1+ ...+ pp,=0and 1+ ...+ ¢ Z0; p1+ ... +pn #0
andgqg+...+¢g, =0;0orpr+...+p, #0and g1 + ...+ g, # 0. If either p1 + ...+ p, =0 and
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G1+...+qg#0orp+...+p, #0and ¢1 + ...+ ¢, = 0 then 7 (X)) = Z by proposition 5 of
[10]. If p1 +...+pp #0and ¢1 + ...+ gn # 0 then 7 (Xy) is nonabelian by corollary 6.2.5.
O

Theorem 6.2.7. Let X be a pruned trivalent 2-stratifold where the graph I'x has a label 2 for all
edges incident to a terminal vertex. If m(X) is Z X Zy, for m > 1 then all of the following hold:

1. If b is a black vertex contained in the cycle C then it is a branch vertez;
2. I'x contains no horned trees and all white vertices are of degree < 2;

3. If L is a linear subgraph of I'x whose initial vertex is v] and whose terminal vertex is a

terminal vertex of I'y where LN C = then L is an O-string;

4. The fundamental group 71(X) is isomorphic to 7 X Zox for k > 1 where T'x is orientable if
k > 1 otherwise I'x is either orientable or nonorientable. The integer k > 1 corresponds to the
minimal number of edges with label 2 in all linear subgraphs L whose initial vertex is v} and

whose terminal vertex is a terminal vertex of I'x where LNC =0 for 1 <i < n.

Proof. Suppose m1(X) = Z X Zy, for m > 1. Then (1.) follows from lemma 6.2.6, (2.) follows from
lemma 6.2.2 and lemma 6.2.6, and (3.) follows from lemma 6.2.3.

For each R;, let ; > 0 be the minimum number of edges with label 2 in all linear subgraphs
L contained in R; whose initial vertex is v/ and whose terminal vertex is a terminal vertex of I'x
where L N C' = (). If R; is not linear then then replace R; with a p-string of length 2r;. Let the
resulting graph be called IV. Then I" is an echinus graph where I = E[p1,q1,71; - - DPn, @n, Tn)
where p; = ¢; = 0 for all i. Then 7 (Xr) = 71(X/) and the fundamental group of X1+ has the

following presentation:

k.
{b1, .. bn,t 107 =1, = by, thpt ' =05, j=1,...,ni=1,...,n—1}.

where € is —1 if I" is nonorientable otherwise € is 1. Let k£ be the minimum of {ki,...,k,}. Then

the fundamental group of Xr admits the following presentation:

(by,t: b2 =1, bt~ = bS ).

If K =1 then m(Xr) is Z X Zg and I'x is either orientable or nonorientable.
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Suppose k > 1. Then € = 1 if m1(Xr) is abelian. Then 71 (Xt) is Z X Zor and the graph I'x is
orientable.

O

6.3 Labellings of trivalent 2-stratifolds with abelian fundamental
group

For a trivalent bicolored graph I', we now describe the necessary and sufficient conditions on I"
for 71 (Xr) to be isomorphic to Z X Z,, where I' = T'x.

It is assumed throughout this section, unless otherwise noted, that all 2-stratifolds X have an
associated graph I'x that is homotopy equivalent to S' but not homeomorphic to S', all
white vertices are genus 0 and all terminal vertices are white, and at least one black
vertex belonging to the cycle C of I'x is a branch vertex. It is further assumed that
I'x is pruned.

First, we review the definition of a core-reduced graph that was introduced in [10].

If the graph I" \ C' does not contain a black branch vertex of distance 1 to a terminal vertex then
I' is core-reduced. If '\ C' contains a black branch vertex of distance 1 to a terminal vertex we
let B = {bo1,...,bor} be the set of all outermost black branch vertices where each by, has distance
1 from a terminal vertex wy;. Let the component of I' \ (st(bo;) U wp;) that is disjoint from C be
denoted Tp;. If there exists at least one component Tp; that is not 1-connected let I'g = (. If each
Toi is 1-connected then let Iy = T\ (U st(bo;) U Jwoi UUToi). If T is pruned then let 'y = Iy,
otherwise let T'g be the pruned I'j. For I'y # (), we have that 71 (Xr) = m(Xr,) since r~1(b;o) is
contractible in Xp. For Ty = (), we have that w1 (Xr) is nonabelian.

By induction, if T',_; \ C' contains a black branch vertex of distance 1 to a terminal vertex we let
Bp_1 ={bn-11,---, bn—l,kn_l} be the set of all outermost black branch vertices where each b,_1 ;
has distance 1 from a terminal vertex wy—1 ;. Let the component of I';,_1 \ (st(by—1,;) Uwp—1 ;) that is
disjoint from C' be denoted T),_1 ;. If there exists at least one component 75,1 ; that is not 1-connected
let '), = 0. If each T, ; is 1-connected then let I, =T'),_; \ (U st(bp—1,) U Jwn—1, U UJTn-1,)-
If T/, is pruned the let T',, =T}, otherwise let T',, be the pruned I",.

We define the core reduced graph I'cr of I as follows:
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¢, if T';, = 0 for some n > 0, otherwise
T'cr =< T, for the smallest n such that I',, does not contain a black branch vertex of
distance 1 to a terminal vertex

For a core reduced graph I'cg of I' where I'cr # 0, we have that m1(X1) = 71 (X, ). While if

I'cr = 0 then m1(X7) is nonabelian.

Corollary 6.3.1. Let I' be a bicolored pruned trivalent graph such that Xt is a trivalent 2-stratifold
that has fundamental group Z X Z,, for m > 1. Let I'cr be the core reduced graph of I'. Then all of

the following are satisfied.

1. Tor # 0;

2. The graph Tcg is homotopy equivalent to S but not homeomorphic to S, all white vertices
are genus 0 and all terminal vertices are white, and at least one black vertex belonging to the
cycle C' of Tog is a branch vertex. Further all edges of U'cr incident to a terminal white vertex
have label 2.

Proof. Since w(Xr) is abelian, T'cg # 0. By corollary 6.1.4, the graph T'cr is homotopy equivalent
to S' but not homeomorphic to S, all white vertices are genus 0 and all terminal vertices are white,
and at least one black vertex belonging to the cycle C' of I'cp is a branch vertex. The graph I'cpr
contains no terminal ¢-strings and no black branch vertex of distance 1 to a terminal vertex. If v is
a white terminal vertex of 'cr then v is contained in a terminal p-string and the edge label incident
to v is 2.

O

For a trivalent 2-stratifold with fundamental group Z x Z,,, we show that Z x Z,, = Z X Zqx as

this will simplify our classification results.

Theorem 6.3.2. Let T' be a bicolored pruned trivalent graph. If m(Xr) = Z X Zy, for m > 1 then
m1(X1) =2 Z X Lok for k > 0.

Proof. Let I'cr be the core reduced graph of I'.
Suppose that 71 (Xr) & Z X Zy, for m > 1. By corollary 6.3.1, Tcr # () and the graph T'cpr

is homotopy equivalent to S! but not homeomorphic to S!, all white vertices are genus 0 and all
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terminal vertices are white, and at least one black vertex belonging to the cycle C' of I'cg is a branch
vertex. Further, all edges of ['cr incident to a terminal white vertex have label 2.

By theorem 6.2.7, I'cr has all white vertices of degree < 2, all black vertices of I'cr contained
in the cycle C' are branch vertices, and I'cr contains no horned trees. Let L be a linear subgraph of
I'cr whose initial vertex is v/ and whose terminal vertex w is a white terminal vertex of I'cr and
R; where LN C = v}. Then by theorem 6.2.7, L is an O-string and m;(X1.,) = Z X Zgx for k > 0
where I'cpg is orientable if £ > 1 otherwise I'cg is orientable or nonorientable. The integer k£ > 1
corresponds to the minimal number of edges with label 2 in all linear subgraphs L whose initial
vertex is v and whose terminal vertex is a terminal vertex of I'cr where LN C = () for 1 <i <mn.

O
We state the classification result.

Theorem 6.3.3. Let I" be a bicolored pruned trivalent graph. Then m1(Xr) = Z X Zor for k > 0 if
and only if the following hold:

1. T'x is homotopy equivalent to S* but not homeomorphic to S*, all white vertices are genus 0,

and all terminal vertices are white;

2. The core reduced graph T'cr # 0 and all edges of T'cr incident to a terminal white vertex of
genus 0 have label 2;

3. The graph T'cr is homotopy equivalent to S' but not homeomorphic to S*, all white vertices
are genus 0 and all terminal vertices are white, and at least one black vertex belonging to the

cycle C of I'x is a branch vertex;

4. The graph I'cr contains no horned trees, all white vertices of I'cr are of degree < 2, and all

black vertices contained in C are branch vertices;

5. Let L be an linear subgraph of T'cr whose initial vertex is v} and whose terminal verter w is a
white terminal verter of U'cr. Then L is an O-string that contains r > k edges with label 2 and
there exists at least one L that contains k edges with label 2. If k > 1 then I'cgr is orientable

otherwise I'cp s either orientable or nonorientable.

Proof. Suppose that w1 (X1) & Z X Zgr. Then by the proof of theorem 6.3.2 the result holds.
Suppose that either conditions 1-5 holds. Then by the proof of theorem 6.2.7, w1 (Xt ) = Z X Zok
and 71 (Xr) = m1 (X1 p)- O
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6.4 Trivalent 2-stratifolds with m =7Z x Z

For a trivalent bicolored graph I', we now describe the necessary and sufficient conditions on I"

for 1 (Xr) to be isomorphic to Z x Z where I' = T'y.

Lemma 6.4.1. Let T" be a bicolored pruned trivalent graph. If m(Xr) = Z x Z then the graph T'x
1$ a tree, all terminal vertices are white, and contains one white vertex of genus 1 while all other

white vertices are genus 0.

Proof. Suppose that 71(Xr) =2 Z x Z. By lemma 3.4.5, I'x is homotopy equivalent to S!, all white
vertices are genus 0, and all terminal vertices are white or I'x is a tree, all terminal vertices are
white, and contains one white vertex of genus 1 while all other white vertices are genus 0.

Suppose I'x is homotopy equivalent to S, all white vertices are genus 0, and all terminal
vertices are white. It follows by lemma 6.1.2 that I'y that is homotopy equivalent to S but not
homeomorphic to S* and at least one black vertex belonging to the cycle C' of I'x is a branch vertex.

Since m(X1) 2 Z X Z, T'cr # 0 and m1(Xr) = m1(Xr,p,). Then the graph I'cg is homotopy
equivalent to S but not homeomorphic to S*, all white vertices are genus 0 and all terminal vertices
are white, and at least one black vertex belonging to the cycle C' of I'cp is a branch vertex. The
set of black vertices on the cycle C of I'cp at distance 1 from a terminal vertex of I'cpr is empty
otherwise m (Xr,) = Z. If v is a white terminal vertex of I'cg then v is contained in a terminal
p-string and the edge label incident to v is 2.

By lemma 6.2.2 and the proof of lemma 6.2.6, all white vertices contained in I'cr are of degree
< 2, otherwise 7 (X) is nonabelian. By lemma 6.2.2, I'cr contains no horned trees. Since Xr,
has abelian fundamental group then each C; is a L[p;, ¢;] graph. For each R;, let k; > 0 be the
minimum number of edges with label 2 in all linear subgraphs L contained in R; whose initial vertex
is vl’-’ and whose terminal vertex is a terminal vertex of I'x where L N C' = (). If R; is not a p-string
of length 2k; then replace R; with a p-string of length 2k;. Let the resulting graph be called I' 5.
Then I',, is an echinus graph where I't., = E[p1,¢1,71; - - -3 Pn, Gny ™). Then m(Xr, ) = m1(X1)
and m (Xre,) = m(Xr,, )

For I'np = E[p1,q1,715 - - Pnsqn, ), if either p1 + ... +p, = 0 and ¢1 + ... + g, # 0 or
p1+...4+pp #0and g1 +...+ ¢, =0 then Wl(XFICR) & 7 by proposition 5 of [10]. If py+...+p, #0
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and q; + ...+ ¢, # 0 then m (XF/CR) is nonabelian by corollary 6.2.5. If p; + ...+ p, = 0 and
@1+ ...+ qn =0 then m(Xy,, ) is Z X Zyk for k>0 or m(Xp,, ) is nonabelian.
We conclude that I'x is a tree where all terminal vertices are white and I'x contains one white

vertex of genus 1 while all other white vertices are genus 0.

O

It is assumed for the reminder of the section that all 2-stratifolds X have an associated graph
I'x where I'x is a tree, all terminal vertices are white, and contains one white vertex of

genus 1 while all other white vertices are genus 0.

Lemma 6.4.2. Let X be a pruned trivalent 2-stratifold where the graph I'x has a label 2 for all
edges incident to a terminal white vertex of genus 0. Then X has nonabelian fundamental group if

I'x contains at least one of the following:

1. a white vertex of genus 1 and a white vertex of genus 0 with degree > 2;
2. a white vertex of genus 1 and a horned tree Hr;

8. a white vertex of genus 1 with degree > 1;

Proof. We assume that I'x is not a single white vertex of genus 1.

(1.) Let v be a white vertex of genus 1 and w be a white vertex of degree 3. Let L be the
linear subgraph of I'y with terminal vertices v, w. Suppose e is the edge in L incident to w. Let
P be the subgraph of I'x that corresponds to the component of I'x \ e that contains w. If I'x is
pruned at P, the resulting graph P’ has a corresponding 2-stratifold X ps with nontrivial fundamental
group m1(Xpr) by Lemma 4.3.2. Now for the graph I'x, attach a white vertex of genus 0 with
an edge of label 1 for all black vertices not contained in P. Then there is an epimorphism from
T (X) = m(Xp) *Z x Z.

(2.) Suppose that v is a white vertex of genus 1 and Hp are disjoint. Attach to each black vertex
not contained in Hr a white vertex of genus 0 with edge label 1. Then there is an epimorphism
from 71 (X) — ZoxZ X 7.

(3.) Let v be the white vertex of genus 1. Suppose v has degree > 2. Let E be all edges incident

to v except for one edge e. Let R be the component of I'\ E' that contains v. Pruning I" at R results
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in a tree R’ with a label 2 for all edges incident to a terminal white vertex of genus 0 and v is a white
vertex of degree 1. We assume that v has degree 1 and all other white vertices of I'x are degree < 2.

Suppose that 'y has no black vertices of degree 3. The vertex v is terminal and I'x is a linear
graph. Orient the graph I'x so that vertices are ordered as wyg — by — w; — by — ... — b, — w, with
corresponding edge labels m; —n; — ... —m, — n, where wy = v and w, = w where w is the other
terminal vertex of I'x. By (2.), I'x contains no horned trees. Then either m; = 2, ny = 1 and
mi=1,n=2for2<i<rorm;=1,n;=2for1 <¢<r.

Suppose that m; =2, ny =1 and m; =1, n; = 2 for 2 < i <r. Then prune I'x at the linear
subgraph with initial vertex wg and terminal vertex ws. Let the resulting graph be I''. Then 71 (Xt)

has the following presentation:

{yla Y2, C, b1|cy1y2y1_1y2_17 Cc= b%a b%}

This presentation is equivalent to:

{y1,y2, b1|y1yoyy tys 1, b3}

Suppose that m; =1, n; = 2 for 1 <4 <r. Then prune I'x at the linear subgraph with initial
vertex wg and terminal vertex wy. Let the resulting graph be I. Then 71 (Xp/) has the following

presentation:

{y1,y2, ¢, bileyiyayy 'yy by e = by, b}

This presentation is equivalent to the following:

{y1,v2lly1, y2]°}-

Suppose that 'y has k > 0 black vertices of degree 3. Let b be a black vertex of degree 3 where
b is adjacent to the vertices v, ve,v3 such that v; is the initial vertex of a terminal linear subgraph
T; for i = 1,2. If T; contains a horned tree then Xr has nonabelian fundamental group. If v is
contained in a terminal linear subgraph T or Ts of I'x then there exists another black branch vertex
b' such that b’ is adjacent to the initial vertex of terminal linear subgraphs 77, T3. The subgraphs

T, T} are p-strings. We assume that T3, T5 are p-strings. Apply operation Bl on st(b) UT) U T5.
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The resulting graph I contains with k& — 1 black vertices of degree 3 and 71 (X1v) = m1(Xpr). By

induction hypothesis, the result holds.
O

Corollary 6.4.3. Let ' be a bicolored pruned trivalent graph. If m(Xr) = Z x Z then the core

reduced graph T'c # 0, T'c is a single white vertex of genus 1 with no edges, and X, is a 2-torus.

Proof. Since (Xr) is abelian, I'c # (). Then the graph T'¢ is a tree, all terminal vertices are white,
and contains one white vertex of genus 1 while all other white vertices are genus 0.

Suppose that I'¢ is not a single white vertex of genus 1. Then let v be a white terminal vertex of
genus 0. The graph I'c contains no terminal g-strings and no black branch vertex of distance 1 to a
terminal vertex. Then v is contained in a terminal p-string and the edge label incident to v is 2. By
lemma 6.4.2, then X1, has nonabelian fundamental group. Therefore I'c consists of a single white

vertex of genus 1. O

Theorem 6.4.4. Let T' be a bicolored pruned trivalent graph. Then m1(Xr) =2 Z x Z if and only if
the following hold:

1. The graph I'x is a tree, all terminal vertices are white, and contains one white vertex of genus

1 while all other white vertices are genus 0.

2. The core reduced graph T'c # 0, T'¢ is a single white vertex of genus 1 with no edges, and Xr,,

s a 2-torus.

Proof. Suppose that m1(Xt) = Z x Z. Then (1.) follows by lemma 6.4.1 and (2.) follows by corollary
6.4.3.
Suppose that conditions 1-2 holds. Then 7 (Xt.) 2 Z x Z and m(Xr) = m1(Xr,,).
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