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ABSTRACT

A 2-stratifold is a compact topological space such that each point has a neighborhood homeomorphic
where n-sheets meet. These spaces are a generalization of 2-manifolds, however there is no complete
classification of 2-stratifolds. In this paper, we determine the finite groups that arise as the fundamental
group of a 2-stratifold. Trivalent 2-stratifolds are a subclass locally modelled on where 3-sheets meet.
We then give a classification of trivalent 2-stratifold with finite fundamental group.

1 Introduction

A 2-stratifold X is a compact, Hausdorff space X that contains a closed (possibly disconnected) 1-manifold X(1) as a
closed subspace with the following property: Each point x ∈ X(1) has a neighborhood homeomorphic to R × CF ,
where CF is the open cone on the finite set F with cardinality > 2, and where X \X(1) is a (possibly disconnected)
2-manifold. These spaces appeared while studying Lusternick-Schnirelman type decompositions of 3-manifold in [1].
Related stratified spaces called multibranched surfaces arose while studying the embeddability of 2-dimensional cell
complexes into the 3-sphere. An obstruction for embedding a multibranched surface into the 3-sphere was given in [2].
Then embeddings of multibranched surfaces in 3-manifolds are studied in [3],[4], and [5].

If each point of X(1) has a neighborhood where 3 sheets meet then X is called trivalent. Trivalent 2-stratifolds are a
subset of spaces called foams. Foams and 2-stratifolds appear as spines of 3-manifolds. While all special spines are
foams, very few 2-stratifolds occur as spines of 3-manifolds. Spines of closed 3-manifolds that are 2-stratifolds have
been classified in [6]. It was shown in [5] that every multibranched surface, and hence every 2-stratifold, embedds in
R4. Reidemeister/Roseman-type moves on knotted foams in R4 have been studied in [7].

Any F -group can be realized as the fundamental group of a 2-stratifold. This family of groups are essentially the
fuchsian groups. In general the fundamental group of a 2-stratifold can be represented as the fundamental group of a
certain type of graph of groups. However these spaces are not determined by their fundamental group and there is no
classification of general 2-stratifolds. For 1-connected trivalent 2-stratifolds a classification was given in [8]. Then a
classification of trivalent 2-stratifolds with fundamental group Z followed in [9]. Since the homeomophism class of a
2-stratifold is determined by a bicoloured labelled graph ΓX , these classifications are in terms of conditions that can be
read off the graph ΓX .

We extend the classification to trivalent 2-stratifolds with finite fundamental group in this paper. This classification is
given by Theorems 7.3-7.7. The main step in proving the classification is to determine the finite fundamental groups of
a trivalent 2-stratifold. This is given by the following:

Theorem 7.2 Let XΓ be a trivalent 2-stratifold. If XΓ has finite fundamental group then π1(XΓ) is isomorphic to
either Z2k+1 , Z3∗2k , or the dihedral group D2k+1 where k ≥ 0.



A PREPRINT - SEPTEMBER 4, 2021

The outline of the paper is as follows. In section 3, we prove that the finite fundamental groups of 2-stratifolds are the
finite F -groups. Then in section 4 and section 5, we find necessary conditions and sufficient conditions for a trivalent
2-stratifold XΓ to have finite fundamental group. To find these conditions we introduce a surgery type move on the
graph ΓX called operation B1. In the final section, we produce the classification of trivalent 2-stratifolds with finite
fundamental group.
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2 Properties of 2-stratifolds

We find necessary conditions for a 2-stratifold X to have finite fundamental group in this section. This is done in
Lemma 2.2. Beforehand we review how to obtain an associated bipartite labelled graph ΓX for X .

A component B of X(1) has a regular neighborhood denoted by N(B) = Nπ(B). The regular neighborhood Nπ(B) is
homeomorphic to the mapping cylinder of f where if π is the partition n1 + n2 + . . .+ nr of d, the map f : B̃ → B
is from a closed 1-manifold with components B̃1, B̃2,. . . , B̃r and the restriction of f to B̃i is an ni-fold covering
1 ≤ i ≤ r. The space Nπ(B) is determined by the partition of d.

For a 2-stratifold X there is an associated bipartite graph ΓX embedded in X . For disjoint components B and B′ of
X(1) allow N(B) and N(B′) be chosen sufficiently small so that N(B) and N(B′) are disjoint. The white vertices wi
of the graph ΓX are the components Wi of M = X \ ∪iN(Bi) for all components Bi of X(1). The black vertices bi
of graph ΓX correspond to the regular neighborhood N(Bi). An edge is eij is component of Eij of ∂M that joins bj
and wi if Wj ∩N(Bi) = Eij . We label the white vertices wi of graph ΓX with the genus of the corresponding surface
Wi. By convention, we assign a negative genus g to a nonorientable surface. Each edge of ΓX is labeled by an integer
k, where k is the summand of the partition π corresponding to the boundary component E of N(Bi).

Notation 2.1. The labelled bipartite graph associated to a 2-stratifold X is denoted by ΓX and X is denoted by XΓ.

For a given labelled graph Γ, by pruning away edges and vertices we obtain a subgraph Γ′ such that there is an
epimorphism from π1(XΓ) to π1(XΓ′). It was shown in [10], there is a retraction r : X → ΓX such that r−1(b) is a
singular curve B ∈ X(1) and r−1(w) is a 2-manifold W . Let Γ0 be a subgraph of ΓX and let Y = r−1(Γ0). The space
Y contains boundary curves corresponding to St(Γ0)− Γ0, where St(Γ0) is the closed star of Γ0 in ΓX . Denote the
labelled edges of St(Γ0)−Γ0 adjacent to a black vertex of ΓX as E. Attach disks with a degree 1 attaching maps to the
boundary curves of Y . The resulting space is a 2-stratifold Y ′ = XΓ′ where Γ′ is obtained by deleting the complement
of Γ0 ∪ E from ΓX then attaching white vertices of genus zero to the labelled edges of E. We say Γ′ is obtained from
Γ by pruning at Γ0.

If Γ is a bipartite labelled tree then there is a unique 2-stratifold X such that ΓX = Γ. We now give necessary conditions
on ΓX for X to have finite fundamental group.

Lemma 2.2. Let X be 2-stratifold with graph ΓX . If π1(X) is finite then ΓX is a tree that satifies one of the following
set of conditions:

1. ΓX has all white vertices of genus 0, one black terminal vertex and all other terminal vertices are white.

2. ΓX has at most one white vertex of genus −1 while all other white vertices are genus 0, and all terminal
vertices are white.

Proof. The retraction r : X → ΓX induces an epimorphism r? : π1(X) → π1(ΓX). Therefore ΓX is a tree. If w
is a white vertex of ΓX then pruning ΓX at w results in a closed 2-manifold W ′ with finite fundamental group. The
2-manifold W ′ is either a 2-sphere or real projective plane. It was shown in [9] that π1(X) is infinite if ΓX contains at
either two black terminal vertices, two white vertices of genus g, or a black terminal vertex and white vertices of genus
g for g 6= 0. Therefore ΓX contains at most one white vertex of genus −1 or one black terminal vertex. If ΓX contains
one black terminal vertex then all other terminal vertices are white and all white vertices are genus zero. If ΓX contains
a white vertex of genus −1 then all other white vertices are genus zero and all terminal vertices are white.
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3 Finite 2-stratifolds groups

We determine the finite fundamental groups of 2-stratifolds in this section. This is given by Theorem 3.6. To find these
finite groups, we represent the fundamental group of X as a fundamental group of a graph of groups and show the
reduced graph of groups must be a vertex.

An abstract graph Y consists of two sets: V = V (Y ), vertices, and E = E(Y ), (oriented) edges, together with maps
E → V × V , e→ (o(e), t(e)) (the originating and terminal vertices of e), and E → E, e→ ē (reversal of orientation)
such that e = ¯̄e, e 6= ē, t(e) = o(ē), and o(e) = t(ē). A graph of groups (G, Y ) consists of an abstract graph Y, two
families of groups {Gv|v ∈ V (Y )}, {Ge|e ∈ E(Y )} such that Ge = Gē, and a family of monomorphisms {fe} with
fe : Ge → Gt(e), fē : Gē → Go(e). For a graph of groups (G, Y ), the group F (G, Y ) is generated by the vertex groups
Gv and elements e corresponding to the elements of E(Y ), subject to the relations ē = e−1 and efe(x)e−1 = fē(x)
for all x ∈ Ge and for each e ∈ E(Y ). For a fixed vertex v0, the fundamental group π1(G, Y, v0) of the graph of
groups (G, Y ) is the subgroup of F (G, Y ) generated by all words

w = r0e1r1e2 . . . enrn
where v0 − v1 − v2 − . . . − vn is an edge path with initial and terminal vertex v0 = vn (i.e. a cycle based at v0),
successive edges ei (joining vi−1 to vi) and ri ∈ Gvi . The word w = r0e1 . . . enrn of length n is reduced, if for
n = 0, r0 6= 1; for n ≥ 1, ri 6∈ fe(Gei), for each index i such that ei+1 = ēi. The group π1(G, Y, v0) is independent
of the choice of v0.

Serre showed the following in [11]
Lemma 3.1. If w ∈ π1(G, Y, v0) is a reduced word then w 6= 1 in π1(G, Y, v0). If (G, Y ) is a graph of groups, the
homomorphism Gv → π1(G, Y, v0) is injective.

A subgraph of subgroups (G′, Y ′) of (G, Y ) is a graph of groups where Y ′ is a connected subgraph of Y , G′v ≤ Gv
for all v in Y ′, and for all e ∈ E(Y ′), G′e ≤ Ge and f ′e = fe|G′e . Bass proved the next lemma in [12].
Lemma 3.2. If (G′, Y ′) is a subgraph of groups of (G, Y ), then the natural homomorphism i? : π1(G′, Y ′, v0) →
π1(G′, Y ′, v0) is injective.

We will denote the fundamental group π1(G, Y, v0) as Gv0 ?Ge
Gv1 if the graph of groups (G, Y ) has a graph Y with

one edge {e, ē} and two vertices v0, v1.
Lemma 3.3. Let (G, Y ) be a graph of groups where G = π1(G, Y, v0). Let {e, ē} be an edge contained in Y . If
o(e) 6= t(e), fe, fē are not surjective, and Go(e), Gt(e) are nontrivial then G is not finite and not abelian.

Proof. We write fe, fē as inclusions so that Ge < Gv1 , Gē < Gv0 .

(1.) Let v0 = o(e) and v1 = t(e). Let (H,X) be a subgraph of subgroups (G, Y ) where Hv = Gv for all v ∈ V (X),
He = Ge for all e ∈ E(X), and X consists of two vertices v0, v1 and a single edge {e, ē}. The fundamental group
π1(H,X, v0) = N is a subgroup of G. The group N is the free product with amalgamation Gv0 ?Ge

Gv1 . There exists
a ∈ Gv0 and b ∈ Gv1 such that a 6∈ Gē and b 6∈ Ge. The word (ab)k is a reduced word in N for all k and by lemma 3.1
(ab)k 6= 1 in N . The word ab has infinite order. The word aba−1b−1 is a reduced word in N and aba−1b−1 6= 1 in N .

An edge e of a graph of groups (G, Y ) is said to be trivial if o(e) 6= t(e) and fe is an isomorphism. An edge e of a
graph of groups (G, Y ) where Gt(e) = {∅} and o(e) 6= t(e) is trivial by this definition. Collapsing a trivial edge e of
a graph of groups (G, Y ) is the process constructing a new graph of groups (G′, Y ′) where Y ′ is obtained from Y by
contracting {e, ē} to a point E, set GE := Go(e), and G′ = G on all remaining edges and vertices. The fundamental
group of (G′, Y ′) is isomorphic to the fundamental group of (G, Y ). A graph of groups with no trivial edge is said to
be reduced.

Let Y be an abstract graph. The realization of Y is the topological graph Y with vertices v(Y ) and edges corresponding
to the edges {e, ē}.
Lemma 3.4. Let (G, Y ) be a graph of groups with a finite graph Y . If (G, Y ) is a graph of groups where π1(G, Y, v0)
is finite then π1(G, Y, v0) ∼= π1(G′, Y ′, v′0) such that (G′, Y ′) is a reduced graph of groups where the graph Y ′ is a
vertex v′0 with no edges and the vertex group Gv′0 of (G′, Y ′) is isomorphic to a vertex group Gw of (G, Y ).

Proof. Let Y be the realization of Y . For any graph of groups (G, Y ) there is a surjective homomorphism
π1(G, Y, v0) → π1(Y, v0) where π1(Y, v0) is the fundamental group of the graph Y. If (G, Y ) is a graph of groups
where π1(G, Y, v0) is finite then Y is a tree.
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Figure 1: Collapsing a trivial edge.

For a graph of groups (G, Y ) where the graph Y contains a single vertex, the graph Y must contain no edges by the
previous paragraph.

Otherwise, by induction, we assume that for a graph of groups (G, Y ) where π1(G, Y, v0) is finite and Y contains n− 1
vertices then π1(G, Y, v0) ∼= π1(G′, Y ′, v′0) where (G′, Y ′) is a reduced graph of groups such that Y ′ is a vertex v′0
and the vertex group Gv′0 of (G′, Y ′) is isomorphic to a vertex group Gw of (G, Y ).

Suppose that (G, Y ) is a graph of groups where π1(G, Y, v0) is finite and Y contains n vertices. Let (H,X) be a
subgraph of subgroups (G, Y ) where Hv = Gv for all v ∈ V (X), He = Ge for all e ∈ E(X), and X consists of two
vertices v1, v2 and a single edge {e} incident to v1, v2. Let v1 = o(e) and v2 = t(e). If {e, ē} are nontrivial edges in
(G, Y ), then the fundamental group π1(H,X, v1) is Gv1 ?Ge Gv2 , which is infinite by lemma 3.3. But π1(H,X, v1)
is a subgroup of π1(G, Y, v1) and every subgroup of a finite group is finite. At least one edge e′ of {e, ē} is trivial in
(G, Y ). Let (G′, Y ′) be the graph of groups obtained by collapsing the trivial edge e′ of the graph of groups (G, Y ). In
(G′, Y ′), Y ′ contains n− 1 vertices.

For a 2-stratifold XΓ, it was shown in [6] that π1(XΓ) determines a graph of groups (G, Y ) where Y = ΓX such that
Y is the realization of Y and π1(G, Y, v0) ∼= π1(XΓ). The graph Y is a bipartite graph which is induced by ΓX . The
groups Gb of the black vertices and the groups Ge of the edges are cyclic. The groups Gw of the white vertices with
edges e1, . . . , ep labelled m1, . . . ,mp have the following presentation,

Gw = {c1, . . . , cp, y1, . . . , yn : c1 . . . cpq = 1, cm1
1 , . . . , cmr

r (r ≤ p)},

where p, n ≥ 0 and q = [y1, y2] . . . [y2g−1, y2g] or q = y2
1 . . . y

2
g . If a group G has a presentation given by Gw where

all mi ≥ 2 and r = p then G is an F -group. Otherwise Gw is a free product of cyclic groups.

The finite F -groups are determined in [13].

Lemma 3.5. The group F is finite cyclic if and only if n = 0 and p ≤ 2 or n = 1 and p ≤ 1. The group F is finite
non-cyclic if and only if n = 0, p = 3, and (m1,m2,m3) is either (2, 2,m) with m ≥ 2 (dihedral group of order 2m)
or (2, 3, k) with 3 ≤ k ≤ 5 (the tetrahedral, octahedral, dodecahedral groups).

Theorem 3.6. Let X be a 2-stratifold. If X has finite fundamental group then π1(X) is either trivial, finite cyclic,
dihedral group of order 2m, or the tetrahedral, octahedral, dodecahedral groups.

Proof. Suppose that (G, Y ) is the associated graph of groups to π1(XΓ) such that π1(G, Y, v0) ∼= π1(XΓ). If (G, Y )
is a graph of groups where π1(G, Y, v0) is finite then Y is a tree, all vertex groups Gv and all edge groups Ge are
finite. The vertex groups Gw of (G, Y ) are finite F -groups. The vertex groups Gb and edge groups Ge of (G, Y ) are
finite cyclic groups. By lemma 3.4, π1(G, Y, v0) is isomorphic to a vertex group of (G, Y ). Therefore π1(G, Y, v0) is
isomorphic to either the trivial group or a finite F -group.
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4 Operation B1 on Trivalent 2-stratifolds

We first review the definition of a trivalent 2-stratifold X and other relevant definitions. Then we introduce a surgery
type move on the graph ΓX called operation B1. The section is completed by Corollary 4.3.1 which states if ΓX is a
tree then ΓX contains a certain number of black vertices.

A 2-stratifold X is called trivalent if the graph ΓX has every black vertex b either incident to three edges, each with
label 1, two edges, one with label 1, the other with label 2, or b is a terminal vertex with adjacent edge of label 3. A
graph ΓX is also said to be trivalent if XΓ is a trivalent 2-stratifold.

A p-string of length 2r is an oriented linear graph w0 − b1 − w1 − b2 − ... − br − wr with all white vertices wi of
genus 0, successive edge labels 1212...12 (starting at w0) and with r labels of 2. A q-string is an oriented linear graph
with all white vertices wi of genus 0, successive edge labels 2121...21 (starting at w0), and with r labels of 2. A p-string
(or q-string) is terminal if wr is a terminal white vertex of Γ. If L is a terminal q-string then pruning L from ΓX does
not alter the fundamental group of a X . A trivalent 2-stratifold graph Γ is pruned if Γ contains no terminal q-strings. A
trivalent 2-stratifold X is also said to be pruned if the associated labeled graph ΓX is pruned.

A linear bipartite labelled graph L with successive vertices w0 − b1 − w1 − . . . − br − wr, successive labels
m1, n1, . . . ,mr, nr where mi (resp. ni) is the label of the edge joining bi to wi−1 (resp. wi) for r = 1, . . . , r will be
denoted by L = L(m1, n1, . . . ,mr, nr). A linear subgraph L(m1, n1, . . . ,mr, nr) of ΓX (resp. L(n1, . . . ,mr, nr))
will be called terminal if wr is a terminal vertex of Γ and vertices bi, wi for i > 0 (resp. bi+1, wi for i > 0) are
of degree < 3. Let L = L(m1, n1, . . . ,mr, nr) be a terminal linear subgraph of Γ where the initial vertex w0 has
genus g and all other white vertices in L have genus 0. Let L(1, n1 . . . nr) be a linear graph whose initial vertex has
genus g while all other vertices have genus 0. L-pruning Γ at L(m1, n1, . . . ,mr, nr) is the process of replacing
L(m1, n1, . . . ,mr, nr) with L(1, n1 . . . nr). In [14] it was shown, if gcd(mi, nj) = 1 for 1 ≤ i ≤ j ≤ r then
π1(XΓ) ∼= π1(XΓ′).

For trivalent 2-stratifolds X whose graph ΓX contains n > 1 black vertices of degree 3, the operation B1, (seen below),
applied to the graph ΓX produces a new graph Γ′ that contains n− 1 black vertices of degree 3.

Let Γ be a trivalent graph containing a black vertex b of degree 3 with adjacent vertices v1, v2, v3, such that vi is the
initial vertex of a terminal p-string Pi of length 2pi for i = 1, 2. Operation B1 produces a trivalent graph Γ′ from Γ by
replacing st(b)∪ P1 ∪ P2 with a p-string P ′ (with initial vertex v3) of length min{2p1, 2p2}. The p-string P ′ in Γ′ will
be referred to as the associated p-string.

v3

v1

v2

v3
2

2 2

2 2 2

2

Figure 2: Operation B1

Lemma 4.1. Let X be a trivalent 2-stratifold whose graph ΓX contains n > 1 black vertices of degree 3. Let b to be
a black vertex of ΓX with degree 3 that is adjacent to the initial vertex of two terminal p-strings P1, P2 with length
2p1, 2p2 respectively. Let Γ′ be obtained from Γ by operation B1. Then π1(XΓ) ∼= π1(XΓ′) and Γ′ contains n − 1
black vertices of degree 3.

Proof. L-prune the terminal p-strings Pi. In the resulting graph Γ′, the black vertex b is adjacent to two terminal
vertices v′1, v

′
2 where the edge incident to b and v′i has label 2pi . L-pruning induces an isomorphism, so π1(XΓ) is

isomorphic to π1(XΓ′). Let the terminal linear graph, whose initial vertex is b and whose terminal vertex is v′i, be called
Li. Construct Γ′′ by replacing (L1 \ b)∪ (L2 \ b) with a single terminal linear branch L′′ of length 1, with initial vertex
b, terminal vertex w of genus 0, and with edge label min(2p1 , 2p2). The group π1(XΓ′) is isomorphic to π1(XΓ′′).
The stratifold XΓ′′ is not a trivalent 2-stratifold. Replace the terminal linear graph L′′ ∪ st(b)∪ v3 with a p-string P ′ of
length min(2p1, 2p2) with initial vertex which has been replaced by v3. The resulting graph Γ′′′ contains n− 1 black
vertices of degree 3, XΓ′′′ is a trivalent 2-stratifold, and the fundamental group π1(XΓ′′′) is isomorphic to π1(XΓ).

Remark 4.2. We note the operation B1 does not alter ΓX \ (st(b) ∪ T1 ∪ T2). Then Γ′ \ (P ′ \ v3) = ΓX \
(st(b) ∪ P1 ∪ P2). If S is a subgraph of Γ′ that is contained in Γ′ \ (P ′ \ v3) then the same subgraph in ΓX contained
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in ΓX \ (st(b) ∪ P1 ∪ P2) will also be called S and vice versa. Whether S is a subgraph of Γ′ or a subgraph of ΓX
will be determined by context.

By inductively applying the operation B1, it will be shown that a trivalent 2-stratifold graph ΓX will be produced with
no black vertices of degree 3 if X has finite fundamental group. To insure this can be inductively done, we show that
certain trivalent 2-stratifold graphs ΓX have the property given in Corollary 4.3.1.

Lemma 4.3. Suppose that Γ is a tree. If every nonterminal vertex of Γ has degree 3 then Γ contains two more terminal
vertices than nonterminal vertices.

Proof. Suppose the graph Γ has m total vertices then the number of edges is m− 1 since Γ is a tree. If Γ contains k
terminal vertices then the number of nonterminal vertices ism−k. By the handshaking lemma we have k+3(m−k) =
2(m− 1). The total number of vertices is then m = 2k − 2. Therefore we get (m− k) = k − 2.

Corollary 4.3.1. Let X be a trivalent 2-stratifold where ΓX is a tree that contains n > 1 black vertices of degree 3
and all white vertices are degree ≤ 2. If ΓX contains at most one black terminal vertex then ΓX contains at least two
black vertices of degree 3 that are adjacent to the initial vertex of two terminal linear subgraphs.

5 Graphs of Trivalent 2-Stratifolds with Finite Fundamental Group

The goal of this section is to find further necessary conditions for a trivalent 2-stratifold to have finite fundamental
group. These conditions are given by theorem 5.4. The following lemma was shown in [10] and will be used frequently.

Lemma 5.1. Let X be a pruned trivalent 2-stratifold. If ΓX has all white vertices of genus 0, all terminal edges have
label 2, and all terminal vertices are white then XΓ is not simply connected.

In this section, we assume that all 2-stratifolds X satisfy a set of necessary conditions from lemma 2.2. Namely, the
graph ΓX is a tree that satisfies one of the following conditions: the graph ΓX has exactly one black terminal vertex, all
other terminal vertices are white, and all white vertices are genus 0; the graph ΓX has exactly one white vertex of genus
−1, all other white vertices are genus 0, and all terminal vertices are white; or the graph ΓX has all white terminal
vertices and white vertices are of genus 0.

We denote a linear subgraph L of ΓX with vertices w0 − b1 − w1 − b2 − w2, successive edge labels 2, 1, 1, 2, and all
white vertices wi are of genus 0 as L(2, 1, 1, 2).

Lemma 5.2. Let X be a pruned trivalent 2-stratifold where the graph ΓX has a label 2 for all edges incident to a
terminal white vertex of genus 0. Then X has infinite fundamental group if ΓX contains at least one of the following:

1. two linear subgraphs L1(2, 1, 1, 2) and L2(2, 1, 1, 2) where L1 and L2 are disjoint or L1 and L2 intersect at
a vertex v such that v is a terminal vertex of L1 and L2;

2. a black terminal vertex with edge label 3 and a white vertex of degree > 2;

3. a white vertex of genus −1 and a white vertex of degree > 2;

4. a white vertex of genus −1 with degree ≥ 2;

5. or at least two white vertex w1, w2 of degree > 2.

Proof. (1.) Attach to each black vertex not contained in L1(2, 1, 1, 2) or L2(2, 1, 1, 2) of ΓX a white vertex of genus 0
with edge label 1. Then there is an epimorphism from π1(X)→ Z2 ? Z2.

(2.) Assume that b is the black terminal vertex of ΓX and w is the white vertex of degree > 2. Let L be the linear
subgraph of ΓX with terminal vertices b, w. Suppose e is the edge in L incident to w. Let P be the subgraph of ΓX that
corresponds to the component of ΓX \ e that contains L \ {e, w} and let K be the subgraph of ΓX that corresponds to
the component of ΓX \ e that contains w. If ΓX is pruned at K, the resulting graph K ′ has a corresponding 2-stratifold
XK′ with nontrivial fundamental group π1(XK′) by Lemma 5.1. Now for the graph ΓX , attach a white vertex of genus
0 with an edge of label 1 for all black vertices in P except b. There is an epimorphism from π1(X)→ π1(XK′) ? Z3.

(3.) Let v be a white vertex of genus −1 and w be a white vertex of degree 3. Let L be the linear subgraph of ΓX with
terminal vertices v, w. Suppose e is the edge in L incident to w. Let P be the subgraph of ΓX that corresponds to the
component of ΓX \ e that contains w. Prune ΓX at L ∪ P . The statement follows by a similar proof to (2.) on the
resulting graph Γ′.

6
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(4.) Suppose that ΓX contains a white vertex v of degree 2 with genus -1. We assume all other white vertices have
degree ≤ 2 otherwise by the previous part X has infinite fundamental group.

Suppose that ΓX has no black vertices of degree 3. The vertex v is not terminal and ΓX is a linear graph. Let L1

be the linear subgraph of ΓX with initial vertex v and terminal vertex w where w is a terminal vertex of ΓX . Orient
the subgraph L1 so that vertices are ordered as w1

0 − b11 − w1
1 − b12 − ... − b1r − w1

r with corresponding edge labels
m1

1 − n1
1 − . . . −m1

r − n1
r where w1

0 = v and w1
r = w. Similarly, let L2 be the linear subgraph of ΓX with initial

vertex v and terminal vertex w′ where w′ is the other terminal vertex of ΓX . Orient the subgraph L2 so that vertices
are ordered as w2

0 − b21 − w2
1 − b22 − ...− b2l − w2

l with corresponding edge labels m2
1 − n2

1 − . . .−m2
l − n2

l where
w2

0 = v and w2
l = w′.

Suppose that at least one Li contains a linear subgraph T with vertices wij− bij+1−wij+1− bij+2−wij+2 and successive
labels 2, 1, 1, 2. If T is disjoint from v then π1(X) surjects onto Z2 ? Z2. If v is a terminal vertex of T then prune ΓX
at T . Note that, there is a surjection from π1(XΓ) to π1(XT ). The group π1(XT ) admits the following presentation:

{b1, b2, c, γ : b21 = 1, b1 = b2, b
2
2 = c, cγ2 = 1}.

The group π1(XT ) is isomorphic Z2 ?Z2. Therefore if the subgraph Li of ΓX contains a linear subgraph T then π1(X)
is infinite.

Suppose the labeling of Li beginning with the edge incident to v is given by 12 . . . 12. Prune ΓX at the linear subgraph
w1

1 − b11 − v − b21 − w2
1 . The resulting stratifold XΓ′ has vertices w1

1 − b11 − v − b21 − w2
1 with successive edge labels,

beginning at the edge incident to w1
1 , 2, 1, 1, 2. The 2-stratifold XΓ′ has a fundamental group that admits the following

presentation:

{b1, b2, γ : b21 = 1, b22 = 1, b1b2γ
2 = 1}.

The group π1(XΓ′) surjects onto Z2?Z2. Therefore for a graph ΓX with no black vertices of degree 3 and a nonterminal
white vertex of genus −1, the fundamental group of XΓ is infinite.

Suppose that Γ contains one black vertex b of degree 3. The black vertex b is adjacent to the initial vertex w1, w2, w3 of
three terminal linear trees T1, T2, T3 respectively. Let T1 contain the white vertex v of genus −1 then T2, T3 contain
only white vertices of genus 0. If either T2, T3 contains a subgraph w0 − b1 − w1 − b2 − w2 with successive labels
2 − 1 − 1 − 2 then π1(XΓ) surjects onto Z2 ∗ Z2. Otherwise, If T2, T3 are p-strings then apply operation B1 to
st(b) ∪ T2 ∪ T3. The resulting graph Γ′ is a linear 2-stratifold with a nonterminal white vertex of genus -1. Then XΓ′

has infinite fundamental group and π1(XΓ) ∼= π1(XΓ′).

By induction, we assume that if ΓX contains k − 1 > 0 black vertices of degree 3 and a nonterminal white vertex of
genus −1 then π1(XΓ) is infinite.

Assume ΓX contains k > 0 black vertices of degree 3 and a nonterminal white vertex v of genus −1. Let b be a black
vertex of degree 3 that is adjacent to the verticesw1, w2, w3 such thatwi is the initial vertex of a terminal linear subgraph
Ti for i = 1, 2. (The black vertex b is an outermost such vertex, in that at least two components of ΓX \ st(b) contains
only vertices with degree < 3.) If v is contained in either T1 or T2, then by lemma 4.3.1, there exists another outermost
black vertex b′ of degree 3 that is adjacent to the initial vertex of two terminal linear branches that does not contain v.
We assume that v is not contained in Ti. If there is a linear subgraph T with vertices wj − bj+1 −wj+1 − bj+2 −wj+2

and successive labels 2, 1, 1, 2 contained in some Ti then there is a surjection from π1(X) onto Z2 ? Z2. If Ti are
p-strings then apply operation B1 on st(b)∪ T1 ∪ T2 such that the resulting graph Γ′ has k− 1 black vertices of degree
3 and π1(XΓ) ∼= π1(XΓ′). The result follows.

(5.) Suppose that ΓX has two white vertices w1, w2 of degree > 2. Let L be a linear subgraph of ΓX with terminal
vertices w1, w2. Let e1 and e2 be the edges incident to w1 and w2 respectively contained in L. Let P be the subgraph
of ΓX that corresponds to the component of ΓX \ {e1, e2} that contains neither w1 or w2. Allow Ki be the subgraph of
ΓX that corresponds to the component of ΓX \ ei that contains wi. If ΓX is pruned at Ki, the resulting graph K ′i has a
corresponding 2-stratifold XK′i

with nontrivial fundamental group π1(XK′i
) by Lemma 5.1. Now for the graph ΓX ,

attach a white vertex of genus 0 with edge label one to each black vertex in the subgraph P . Then π1(X) surjects onto
π1(XK′1

) ? π1(XK′2
).

The next corollary follows from the proof of part (4.) of the previous lemma.
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Corollary 5.2.1. If X is a pruned trivalent 2-stratifold whose graph ΓX has a white terminal vertex of genus −1 and
all edges incident to a terminal vertex have label 2 then π1(X) has infinite fundamental group.

Corollary 5.2.1 is not true if we alter the condition on the terminal edge labels. For example, a trivalent linear 2-stratifold
w0 − b1 − w1 − b2 − w3 with successive labels 1, 2, 1, 2, where w0 has genus −1 and w1, w2 have genus 0, has
fundamental group Z8.

Horned trees were introduced in [8]. The main property of a horned tree is that the fundamental group is Z2. We review
the definition of a horned tree.

A horned tree HT is a finite connected bipartite labelled tree such that

1. all white vertices are genus 0;

2. every black vertex b whose distance to a terminal white vertex is 1 has degree 2; otherwise b has degree 3;

3. every nonterminal white vertex has degree 2;

4. every terminal edge has label 2, every nonterminal edge has label 1;

5. there is at least one vertex of degree 3.

A trivalent linear 2-stratifold w0 − b1 − w1 − b2 − w3 with successive labels 2, 1, 1, 2, all white vertices of genus 0,
and white vertex w1 of degree 2 will also be considered a horned tree.

Lemma 5.3. Let X be a pruned trivalent 2-stratifold where the graph ΓX has a label 2 for all edges incident to a
terminal white vertex of genus 0. Then X has infinite fundamental group if ΓX contains one of the following:

1. a white vertex v of genus −1 and a horned tree HT such that v and HT are disjoint;

2. two horned trees H1, H2 where H1 and H2 are disjoint or H1 and H2 intersect at a vertex v such that
v = H1 ∩H2 and v is a terminal vertex of H1 and H2;

3. a black terminal vertex with edge label 3 and a horned tree HT ;

4. a white vertex w of degree > 2 and a horned tree HT such that either w and HT are disjoint or w is a terminal
vertex of HT ;

5. or a white vertex of degree > 3.

Proof. (1.) Suppose that v and HT are disjoint. By Lemma 5.2, v is a terminal vertex otherwise X has infinite
fundamental group. Attach to each black vertex not contained in HT a white vertex of genus 0 with edge label 1. Then
there is an epimorphism from π1(X)→ Z2 ? Z2.

(2.) Suppose that H1 and H2 are horned trees contained in the graph ΓX . Attach to each black vertex not contained in
H1, H2 of ΓX a white vertex of genus 0 with edge label 1. Then there is an epimorphism from π1(X)→ Z2 ? Z2.

(3.) Suppose that b is the black terminal vertex. Attach to each black vertex not contained in HT or b a white vertex of
genus 0 with edge label 1. There is an epimorphism from π1(X)→ Z2 ? Z3.

(4.) Assume that w has degree equal to 3, all other white vertices are of degree < 3, and all white vertices have genus 0.
The two main cases of this proof is when HT is disjoint from w and when w is a terminal vertex of HT .

Suppose that HT is disjoint from w. Let L be the linear subgraph of ΓX with terminal vertices w and v where v is a
terminal vertex of HT such that L ∩HT = v. Let e1, e2 be the edges incident to w, v (respectively) that are contained
in L. Allow the subgraph P to be the subgraph of ΓX that corresponds to the component of ΓX \ {e1, e2} that contains
L\{e1, e2, w, v}. Also allow the subgraph R to be the subgraph of ΓX that corresponds to the component of ΓX \{e1}
that contains w. If ΓX is pruned at R, the resulting graph R′ has a corresponding 2-stratifold XR′ with nontrivial
fundamental group π1(XR′) by lemma 5.1. Prune ΓX at R ∪ e1 ∪ e2 ∪ P ∪HT and attach white vertices of genus 0
with edge label 1 to all black vertices contained in P of the pruned graph. The resulting graph Γ′ has a fundamental
group isomorphic to π1(XR′) ? π1(Z2).

Now suppose that w is a terminal vertex of HT and let e1, e2 be the edges incident to w that are not contained in HT .
Allow the subgraph of ΓX corresponding to the component of ΓX \ ei that does not contain HT be called Di. Let
Ei = Di ∪ ei ∪ w. By part (2.), if Ei contains a horned tree then π1(X) is infinite, so we assume that Ei contains no
horned trees. Prune ΓX at E1 ∪E2 ∪HT and let the resulting graph be called Γ′. We now show that the fundamental
group of XΓ′ is infinite. Therefore the fundamental group of XΓ will be infinite.
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If Γ′ contains no black vertices of degree 3 then Γ′ has a single white vertex w of degree 3 where w is a terminal vertex
of HT and w is the initial vertex of two terminal p-strings E1, E2 of length 2p, 2q. The associated 2-stratifold XΓ′ has
fundamental group that can be represented with the following presentation:

{c1, c2, c3 : c2
p

1 = 1, c2
q

2 = 1, c23 = 1, c1c2c
2
3 = 1}.

The fundamental group π1(XΓ′) surjects onto Z2 ? Z2. Therefore if Γ′ contains no black vertices of degree 3 then the
fundamental group of XΓ′ is infinite.

We proceed by induction. Assume that if Γ′ contains k − 1 > 0 black vertices of degree 3 then π1(XΓ′) is infinite.

Suppose that Γ′ has k > 0 black vertices of degree 3. Let b be a black vertex of degree 3 that is adjacent to the vertices
w1, w2, w3 such that vi is the initial vertex of a terminal linear subgraph Ti for i = 1, 2. (The black vertex b is an
outermost such vertex, in that at least two components of ΓX \ st(b) contains only vertices with degree < 3.) If the
terminal linear graphs Ti are contained in Ei or HT then they are p-strings. Apply operation B1 on st(b) ∪ T1 ∪ T2

such that the resulting graph Γ′′ has k − 1 black vertices of degree 3 and π1(X ′Γ) ∼= π1(XΓ′′). The result follows.

(5.) Suppose that w is the white vertex of degree 4 contained in ΓX . Then ΓX contains all white terminal vertices and
all white vertices of genus 0, otherwise X has infinite fundamental group.

Suppose that ΓX has no black vertices of degree 3. Let ei be the edges incident to w for 1 ≤ i ≤ 4. Define Li to be the
linear subgraph whose intial vertex is w, whose terminal vertex is a terminal vertex of ΓX , and Li contains the edge ei.
If at least one Li contains a horned tree then XΓ has infinite fundamental group. Assume then that each Li is a p-string
of length 2pi. The 2-stratifold XΓ has fundamental group that can be represented with the following presentation:

{c1, c2, c3, c4 : c2
p1

1 = 1, c2
p2

2 = 1, c2
p3

3 = 1, c2
p4

4 = 1, c1c2c3c4 = 1}.

This is an infinite F -group.

Suppose that ΓX has k > 0 black vertices of degree 3. Let b be a black vertex of degree 3 that is adjacent to the vertices
w1, w2, w3 such that vi is the initial vertex of a terminal linear subgraph Ti for i = 1, 2. (The black vertex b is an
outermost such vertex, in that at least two components of ΓX \ st(b) contains only vertices with degree < 3.) If Ti
contains a horned tree then XΓ has infinite fundamental group. We assume that the terminal linear subgraphs Ti are
p-strings. Apply operation B1 on st(b) ∪ T1 ∪ T2 such that the resulting graph Γ′ has k − 1 black vertices of degree 3
and π1(XΓ) ∼= π1(XΓ′). The result follows by the induction hypothesis.

Theorem 5.4. Let X be a pruned trivalent 2-stratifold where the graph ΓX has a label 2 for all edges incident to a
terminal white vertex of genus 0. If X has finite fundamental group then ΓX is a tree that satisfies one of the following
conditions:

1. ΓX has one terminal vertex v of genus −1 whose incident edge label is 1 while all other white vertices are
genus 0, all terminal vertices are white, all white vertices are of degree ≤ 2, and ΓX contains no horned trees;

2. ΓX has all white vertices of genus 0, all terminal vertices are white, and there is exactly one white vertex v of
degree 3 while all other white vertices are of degree < 3, and ΓX contains no horned tree HT such that either
v and HT are disjoint or v is a terminal vertex of HT ;

3. ΓX has all white vertices are genus 0, all terminal vertices are white, all white vertices are of degree ≤ 2, and
ΓX contains at most one horned tree;

4. ΓX has all white vertices are genus 0, one black terminal vertex, all white vertices are of degree ≤ 2, and ΓX
contains no horned tree.

Proof. If ΓX contains exactly one white vertex v of genus −1 then v is terminal by lemma 5.2 and the label incident to
v is 1 by corollary 5.2.1. Further, all white vertices of ΓX are of degree < 3 by lemma 5.2 and ΓX contains no horned
trees by Lemma 5.3.

If ΓX contains all white vertices of genus 0 and all terminal vertices are white then there exists at most one white vertex
v of degree > 2 by lemma 5.2. If all white vertices of ΓX are of degree < 3 then ΓX contains at most one horned tree
by lemma 5.3. If ΓX contains a white vertex v of degree > 2 then v is degree 3 and ΓX contains no horned tree HT

such that either v and HT are disjoint or v is a terminal vertex of HT by Lemma 5.3.
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If ΓX contains exactly one black terminal vertex then ΓX must have all white vertices of degree < 3 by Lemma 5.2 and
ΓX cannot contain a horned tree HT by Lemma 5.3.

6 Labellings of Trivalent 2-Stratifolds with Finite Fundamental Group

We find sufficient conditions for a trivalent 2-stratifold X to have finite fundamental group. These conditions are given
by the following: lemma 6.2; lemma 6.3; lemma 6.4; lemma 6.5. To find the sufficient conditions, we will inductively
apply operation B1 to a graph ΓX that satisfies a set of conditions from theorem 5.4.

The figure below is an example of a graph Γ that satisfies a set of conditions given by Theorem 5.4. The fundamental
group of XΓ is Z16. The order of this fundamental group is determined by the linear subgraph with initial vertex given
by the genus −1 vertex and terminal vertex given by t1. The connected subgraphs of Γ that are composed of red edges
along with incident vertices are terminal p-strings. We use this example as motivation for the definition of an O-string.

-1

t1

2

2

2

2

2

2

Figure 3: The graph Γ.

An O-string of length 2r is an oriented linear graph w0 − b1 −w1 − b2 − ...− br −wr where the genus of w0 is either
0 or −1 while all other white vertices wi are of genus 0, the labels mi, ni for the successive edges of wi−1 − bi − wi
are either mi = 1, ni = 1 or mi = 1, ni = 2 for 0 < i < r, and the labels mr, nr for the edges of wr−1 − br −wr are
given by the labels mr = 1, nr = 2. A terminal p-string is an O-string.

The next lemma observes certain subgraphs of a given O-string are preserved under operation B1. For example, the
graph Γ′ below is obtained by applying operation B1 to the graph Γ in the above figure. The linear subgraph with initial
vertex given by the genus −1 vertex and terminal vertex given by t1 is an O-string in both Γ and Γ′ and contains the
same number of edges with label 2. The subgraph composed of red edges and incident vertices in Γ′ is the terminal
associated p-string in Γ′.

-1

t1

2

2 2

Figure 4: The graph Γ′ obtained from applying operation B1 to Γ.

Lemma 6.1. Let X be a trivalent 2-stratifold whose graph ΓX is a tree that contains n ≥ 1 black vertices of degree
3. Let b be a black vertex of degree 3 with adjacent vertices v1, v2, v3, such that vi is the initial vertex of a terminal
p-string Pi of length 2pi for i = 1, 2. Let Γ′ be obtained from Γ by operation B1 at st(b) ∪ P1 ∪ P2. Let P ′ be the
associated p-string in Γ′.

Let Li be a linear subgraph of ΓX with an initial vertex w which is a white vertex not contained in Pi and a terminal
vertex ti where ti is the terminal vertex of Pi and a terminal vertex of ΓX . Let L′ be a linear subgraph of Γ′ with initial
vertex w not contained in P ′ \ w3 and terminal vertex t′ where t′ is the terminal vertex of P ′ and a terminal vertex of
Γ′.

10
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1. If L′ is an O-string then L1, L2 are O-strings.

2. If L′ is an O-string that contains k edges with label 2 then L1, L2 contains r ≥ k edges with label 2 and at
least one Li has k edges with label 2.

3. If Γ′ contains a horned tree HT ′ then ΓX contains a horned tree HT .

4. If a horned tree HT ′ of Γ′ contains a terminal vertex of Γ′ then a horned tree HT of ΓX contains a terminal
vertex of ΓX .

Proof. (1.) Suppose L′ is an O-string. Let S be the linear subgraph w0 − b1 − w1 − b2 − ... − br − wr of L′ with
initial vertex w0 = w and terminal vertex wr = v3. For 1 ≤ i ≤ r, the labels mi, ni for the successive edges of
wi−1 − bi − wi contained in S are either mi = 1, ni = 1 or mi = 1, ni = 2. Let Ni be the linear subgraph of Li with
initial vertex v3 and terminal vertex ti. The subgraph Ni is an O-string. The subgraph Li is composed of the subgraph
S with initial vertex w and terminal vertex v3 followed by the subgraph Ni with initial vertex v3 and terminal vertex ti.
The linear graph Li is an O-string.

(2.) Suppose that L′ is an O-string that contains k edges with label 2. Let S and Ni be linear subgraphs as definied
in (1.). By the previous proof Li is an O-string. The subgraph S has r′ ≥ 0 edges with label 2. The subgraph P ′ has
k′ edges with label 2 where k′ + r′ = k. The integer k′ is the minimum of {p1, p2}. Therefore for some i, Ni has k′
edges with label 2. Then the linear graph Li has k′ + r′ = k edges with label 2.

(3.) Suppose Γ′ contains a horned tree HT ′ . For the terminal p-string P ′ of Γ′, order the vertices w′0 − b′1 − w′1 − b′2 −
...− b′r − w′r so that the initial vertex w′0 is v3 and w′r is the terminal vertex t′ of Γ′. The horned tree HT ′ is disjoint
from P ′ or intersects P ′. If the horned tree HT ′ is disjoint from P ′ then HT ′ is contained in ΓX .

Suppose thatHT ′ intersects P ′. ThenHT ′ intersects P ′ at only the vertex v3 or along the linear subgraph P ′′ with initial
vertex v3 and terminal vertex w′1. The linear subgraph P ′′ has vertices w′0 − b′1 − w′1 where w′0 = v3 and successive
labels 1, 2. If the horned tree HT ′ intersects the subgraph of P ′ only at v3 then HT ′ is contained in ΓX . Suppose that
the horned tree HT ′ contains the subgraph P ′′ of P ′. Let H be a subgraph of HT ′ where H = HT ′ \ (st(b′1) ∪ w′1).
Then H is contained in ΓX . For the terminal p-strings Pi of ΓX , order the vertices wi0− bi1−wi1− bi2− ...− biri −w

i
ri

where wi0 = vi and wiri = ti of ΓX for i = 1, 2 and define Ei to the linear subgraph of ΓX with initial vertex v3 and
terminal vertex wi1. Then H ∪ E1 ∪ E2 is a horned tree contained in ΓX .

(4.) Suppose Γ′ contains a horned tree HT ′ where HT ′ contains a terminal vertex of Γ′. Let w be a terminal vertex of
Γ′ that is contained in HT ′ . If P ′ is disjoint from HT ′ then HT ′ is contained in ΓX and w is a terminal vertex of ΓX
and HT ′ . We assume that P ′ is not disjoint from HT ′ .

Suppose that w is disjoint from P ′. Let H be the subgraph of HT ′ as defined in part (3.). The vertex w is contained
in H and either HT ′ is contained in ΓX or the horned tree HT = H ∪ E1 ∪ E2 is contained in ΓX where H,Ei are
defined as in part (3.). If HT ′ is contained in ΓX then w is a terminal vertex of ΓX and HT ′ . If HT is contained in ΓX
then w is a terminal vertex of ΓX and HT .

Suppose that w is contained in P ′. Then P ′ is a p-string of length 2 with initial vertex v3 and terminal vertex w. It
follows from (2.) that at least one of the terminal linear branches Pi in ΓX is p-string of length 2. The horned tree
H ∪ E1 ∪ E2 contains a terminal vertex of ΓX .

The proofs for lemma 6.2 until lemma 6.5 are similar with only minor alterations. Each proof contains three cases for a
trivalent 2-stratifold X: either ΓX contains no black vertices of degree 3; ΓX contains one black vertex of degree 3; or
ΓX contains k > 1 black vertices of degree 3. We will show all cases for Lemma 6.2. Then for Lemma 6.3 until lemma
6.5, we will abbreviate the proofs by showing the cases when ΓX contains no black vertices of degree 3 or k > 1 black
vertices of degree 3.

Lemma 6.2. Let X be a pruned trivalent 2-stratifold where ΓX has a label 2 for all edges incident to a terminal white
vertex of genus 0. Let ΓX have all white vertices of genus 0, all terminal vertices are white, and all white vertices are of
degree ≤ 2. If π1(X) is finite then all of the following hold:

1. ΓX contains a horned tree HT .

2. If L is a linear subgraph of ΓX whose initial vertex v is a terminal vertex of HT and whose terminal vertex w
is a terminal vertex of ΓX where L ∩HT = v and w 6= v then L is an O-string.

11



A PREPRINT - SEPTEMBER 4, 2021

3. The fundamental group π1(X) is isomorphic to Z2k+1 where the integer k = 0 if HT contains a terminal
vertex of ΓX and k > 0 otherwise. The integer k > 0 corresponds to the minimal number of edges with label
2 in all linear subgraphs L whose initial vertex v is a terminal vertex of HT and whose terminal vertex w is a
terminal vertex of ΓX where L ∩HT = v and w 6= v.

Proof. It follows by theorem 5.4, the fundamental group π1(X) is finite implies that the graph ΓX is a tree that contains
at most one horned tree.

Suppose that ΓX has no black vertices of degree 3. The graph ΓX is a linear graph. Orient the graph ΓX so that vertices
are ordered asw0−b1−w1−b2− ...−br−wr with corresponding edge labelsm1−n1− . . .−mr−nr. By assumption
the subgraph w0−b1−w1 has successive labelsm1 = 2, n1 = 1 and the subgraph wr−1−br−wr has successive labels
mr = 1, nr = 2. Each subgraph wi−1−bi−wi for 1 < i < r has successive labels mi = 2, ni = 1 ormi = 1, ni = 2.
There exists a j, where 1 < j ≤ r, such that wj−2 − bj−1 − wj−1 has successive labels mj−1 = 2, nj−1 = 1 and
wj−1 − bj − wj has successive labels mj = 1, nj = 2. The graph ΓX contains a horned tree H given by the graph
wj−2 − bj−1 − wj−1 − bj − wj . By lemma 5.3, ΓX does not contain any other horned tree.

Suppose H does not contain a vertex that is terminal in ΓX . Let L1 be the linear subgraph of ΓX with initial vertex
wj−2 and terminal vertex w0 and let L2 be the linear subgraph of ΓX with initial vertex wj and terminal vertex wr. The
linear subgraphs L1, L2 are p-strings of length 2p1, 2p2. Otherwise ΓX contains more than one horned tree. Note that
L1, L2 are O-strings. L-prune ΓX at the linear subgraphs L1 and L2. The resulting graph Γ′ is a linear graph where
Γ′ = Γ′(2p1 , 1, 2, 1, 1, 2, 1, 2p2) and π1(XΓ) ∼= π1(XΓ′). A presentation of the fundamental group of XΓ′ is given by:

{x1, x2, x3, x4 : x2p1

1 = 1, x1 = x2
2, x2 = x3, x3

2 = x4, x
2p2

4 = 1}.

This presentation is equivalent to:

{x3 : x2p1+1

3 = 1, x2p2+1

3 = 1}.

This group is finite cyclic of order given by the min(2p1+1, 2p2+1). Therefore π1(X) ∼= Z2k+1 where k is the minimum
of {p1, p2}. The number k is the minimum number of edges with label 2 in the O-strings L1, L2.

Suppose that H contains a vertex that is terminal in ΓX . Assume that the horned graph H is w0 − b1 − w1 − b2 − w2.
The linear subgraph L of ΓX with initial vertex w2 and terminal vertex wr is p-string of order 2(r − 2) = 2p1 (and
hence an O-string). L-prune ΓX at the linear graph L. The resulting graph Γ′ is a linear graph (with terminal white
vertices) where Γ′ = Γ′(2, 1, 1, 2, 1, 2p1). A presentation of the fundamental group of XΓ′ is given by:

{x1, x2, x3 : x2
1 = 1, x1 = x2, x

2
2 = x3, x

2p1

3 = 1}.

This presentation is equivalent to:

{x1 : x2
1 = 1}.

Therefore π1(X) ∼= Z2 if H contains a terminal vertex of ΓX .

We now show that this lemma holds for a graph ΓX with one black vertex of degree 3 then proceed with induction for a
graph ΓX with n > 1 black vertices of degree 3.

Suppose that ΓX contains one black vertex b of degree 3. The black vertex b is adjacent to the initial vertex v1, v2, v3

of three terminal linear subgraphs T1, T2, T3 respectively. At most one terminal linear subgraph T1, T2, T3 contains
a horned tree. If Ti does not contain a horned tree then Ti is a p-string. Let T1, T2 be p-strings. Let the terminal
vertices of Ti which are terminal vertices of ΓX be called ti for i = 1, 2. Apply operation B1 to st(b) ∪ T1 ∪ T2. The
resulting graph Γ′ is a linear 2-stratifold. Let the associated p-string be called T ′. Note that v3 is the initial vertex of
the associated p-string T ′ in Γ′ and v3 is not a terminal vertex of either ΓX or Γ′. The fundamental group π1(XΓ′) is
isomorphic to Z2k+1 for k ≥ 0 and Γ′ contains a horned tree H ′. Orient the graph Γ′ so that vertices are ordered as
w′0− b′1−w′1− b′2− ...− b′r −w′r with corresponding edge labels m′1−n′1− . . .−m′r −m′r. Then there is a j, where
1 < j ≤ r such that w′j−2 − b′j−1 − w′j−1 − b′j − w′j is a horned tree H ′.

The fundamental group π1(XΓ) is isomorphic to π1(XΓ′) and by Lemma 6.1 if Γ′ contains a horned tree H ′ then ΓX
contains a horned tree H . Further if π1(XΓ′) is isomorphic to Z2 then the horned tree H ′ of Γ′ contains a terminal
vertex of Γ′. It follows that π1(XΓ) is isomorphic to Z2 and by Lemma 6.1 the horned tree H contains a terminal vertex
of ΓX .

12
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We now show that all linear subgraphs L of ΓX whose initial vertex v is a terminal vertex of H and whose terminal
vertex w is a terminal vertex of ΓX where H ∩L = w and v 6= w are O-strings. Then we show that if π1(ΓX) ∼= Z2k+1

where k > 0 that k corresponds to the minimal number of edges with label 2 in all O-strings L with initial vertex v and
terminal vertex w.

Suppose that π1(XΓ′) ∼= Z2. Let the horned tree H ′ be the subgraph w′0 − b′1 − w′1 − b′2 − w′2 in Γ′. Let L′ be the
linear subgraph of Γ′ with initial vertex w′2 and terminal vertex w′r. The vertex v3 is either a nonterminal vertex of H ′,
a terminal vertex of H ′, or disjoint from H ′.

If v3 is disjoint from H ′ in Γ′ then v3 = w′i where 2 < i < r and H ′ is properly contained in the terminal linear
subgraph T3 of ΓX . If v3 is a terminal vertex of H ′ then v3 = w′2 and the horned tree H ′ is the terminal linear subgraph
T3 of ΓX . Since the linear subgraph L′ is a p-string in Γ′, it follows by Lemma 6.1, that every linear subgraph L of ΓX
whose initial vertex is w′2 and whose terminal vertex is ti of ΓX is an O-string.

If v3 is a nonterminal vertex of H ′ then v3 = w′1. The horned tree H contained in ΓX contains the black vertex b.
Therefore the terminal linear branches T1, T2, T3 are all p-strings. T3 is of length 2. If Ti is of length > 2 then let Oi
be the linear subgraph contained in Ti whose initial vertex v is a terminal vertex of H and whose terminal vertex is a
terminal vertex of ΓX such that Oi ∩H = v. Then Oi is a p-string.

Suppose that π1(XΓ′) ∼= Z2k+1 where k > 0. ThenH ′ is the subgraph of Γ′ with verticesw′j−2−b′j−1−w′j−1−b′j−w′j
where 2 < j < r. The horned tree H ′ does not contain a terminal vertex of Γ′. Let L′1 be the linear subgraph of Γ′ with
initial vertex w′j−2 and terminal vertex w′0 and let L′2 be the linear subgraph of Γ′ with initial vertex w′j and terminal
vertex w′r. The linear subgraphs L′1, L

′
2 are p-strings of length 2p′1, 2p

′
2 where p′i ≥ k and for at least one L′i we have

p′i = k. Suppose that v3 is contained in the linear graph whose initial vertex is w′j−1 and whose terminal vertex is
w′r. (If v3 is contained in the linear graph whose initial vertex is w′j−1 and whose terminal vertex is w′0 then the same
argument applies.) The vertex v3 is either a nonterminal vertex of H ′, a terminal vertex of H ′, or disjoint from H ′.

If v3 is disjoint from H ′ in Γ′ then v3 = w′i where j < i < r and H ′ is properly contained in the terminal linear
subgraph T3 of ΓX . If v3 is a terminal vertex of H ′ then v3 = w′j and H ′ is properly contained in the terminal linear
subgraph T3 of ΓX . In both cases since the linear subgraph L′2 in Γ′ is a p-string, it follows by Lemma 6.1, that every
linear subgraph L of ΓX whose initial vertex is w′j and whose terminal vertex ti of ΓX is an O-string. L′1 is a p-string
in Γ′ that is disjoint from T ′. By remark 4.2, L′1 is contained in ΓX . Let Ri be a linear subgraph of ΓX whose initial
vertex is w′j and whose terminal vertex is ti. If L′2 contains k edges with label 2 then at least one Ri for i = 1, 2
contains k edges with label 2. If L′2 does not contain k edges with label 2 then Ri contains more than k edges with
label 2. Then the subgraph L′1 of Γ′ contains k edges with label 2. By remark 4.2, L′1 is contained in ΓX .

If v3 is a nonterminal vertex of H ′ then v3 = w′j−1. The horned tree H contained in ΓX contains the black vertex b.
Therefore the terminal linear branches T1, T2, T3 are all p-strings. By the same argument in the previous paragraph, all
terminal p-strings Ti are of length l where l ≥ 2(k + 1) and at least one Ti is of length 2(k + 1).

The lemma holds for a graph ΓX with one black vertex of degree 3. We now proceed with induction for a graph ΓX
with n > 1 black vertices of degree 3.

Suppose that ΓX contains n > 1 black vertices of degree 3. Let b be a black vertex of degree 3 that is adjacent to the
vertices v1, v2, v3 such that vi is the initial vertex of a terminal linear subgraph Ti for i = 1, 2. (The black vertex b is an
outermost such vertex, in that at least two components of ΓX \ st(b) contains only vertices with degree < 3.) If Ti does
not contain a horned tree then Ti is a p-string. If either T1 or T2 contains a horned tree, then by lemma 4.3.1, there
exists another such black vertex b′ of degree 3 that is adjacent to the initial vertices of two terminal linear branches
T ′1, T

′
2. Since XΓ has finite fundamental group the two terminal linear branches T ′1, T

′
2 do not contain a horned tree. We

assume T1 and T2 do not contain a horned tree. Then T1 and T2 are terminal p-strings. Let the terminal vertices of Ti
which are terminal vertices of ΓX be called ti for i = 1, 2. Apply operation B1 to st(b) ∪ T1 ∪ T2. The resulting graph
Γ′ has n− 1 black vertices of degree 3. Let the associated p-string be called T ′ and let the terminal vertex of T ′ and Γ′

be called t′. By the induction hypothesis, π1(XΓ′) is isomorphic to Z2k+1 for k ≥ 0 and Γ′ contains a horned tree H ′.

The fundamental group π1(XΓ) is isomorphic to π1(XΓ′) and by Lemma 6.1 if Γ′ contains a horned tree H ′ then ΓX
contains a horned tree H . Further if π1(XΓ′) is isomorphic to Z2 then the horned tree H ′ of Γ′ contains a terminal
vertex of Γ′. By Lemma 6.1, this implies that π1(XΓ) is isomorphic to Z2 and the horned tree H contains a terminal
vertex of ΓX .

Let L′ be a linear subgraph of Γ′ whose initial vertex v′ is a terminal vertex of H ′ and whose terminal vertex w′ is a
terminal vertex of Γ′ where L′ ∩H ′ = v′ and w′ 6= v′. By the induction hypothesis L′ is an O-string. By remark 4.2
and lemma 6.1, if L′ is disjoint from T ′ \ v3 then L′ is an O-string in ΓX that is disjoint from st(b) ∪ T1 ∪ T2 and the
initial vertex v′ of L′ is a terminal vertex of HT . We assume L′ is not disjoint from T ′ \ v3. Then the terminal vertex
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w′ of L′ is t′ which is the terminal vertex of T ′. The vertex v3 is either a nonterminal vertex of H ′, a terminal vertex of
H ′, or disjoint from H ′.

If v3 is disjoint from H ′ then L′ properly contains the p-string T ′. If v3 is a terminal vertex of H ′ then L′ is the p-string
T ′. In both cases H ′ is contained in ΓX . It follows by Lemma 6.1, that every linear subgraph L of ΓX whose initial
vertex is v′ and whose terminal vertex is ti of ΓX is an O-string.

If v3 is a nonterminal vertex of H ′ then L′ is properly contained in T ′. For the terminal p-strings Ti of ΓX , order the
vertices wi0 − bi1 − wi1 − bi2 − ... − biri − w

i
ri where wi0 = vi and wiri = ti of ΓX for i = 1, 2. The terminal linear

subgraphs T1, T2 of ΓX intersect the horned tree H at the subgraphs wi0 − bi1 − wi1. The terminal linear subgraphs of
T1, T2 whose initial vertex is wi1 and whose terminal vertex is ti is an O-string.

Suppose that π1(XΓ) ∼= Z2k+1 where k > 0. Then H ′ does not contain a terminal vertex of Γ′. By the induction
hypothesis, there exists an O-string L′ of Γ′ whose initial vertex is a terminal vertex v′ of H ′ and whose terminal vertex
w′ is a terminal vertex of Γ′ where L′ ∩H ′ = v′ and L′ contains k edges with label 2. The number k is minimal among
all such O-strings. By remark 4.2 and lemma 6.1, if L′ is disjoint from T ′ \ v3 then L′ is an O-string in ΓX that is
disjoint from st(b)∪ T1 ∪ T2 and the initial vertex v′ of L′ is a terminal vertex of H . We assume L′ is not disjoint from
T ′ \ v3.

The vertex v3 is either a nonterminal vertex of H ′, a terminal vertex of H ′, or disjoint from H ′. If v3 is disjoint from
H ′ then L′ properly contains the p-string T ′. If v3 is a terminal vertex of H ′ then L′ is the p-string T ′. In both cases
H ′ is contained in ΓX . It follows by Lemma 6.1, that at least one linear subgraph L of ΓX whose initial vertex is v′
and whose terminal vertex is ti of ΓX is an O-string with k edges with label 2.

If v3 is a nonterminal vertex of H ′ then L′ is properly contained in T ′. The terminal linear subgraph T ′ contains k + 1
edges with label 2. For the terminal p-strings Ti of ΓX , order the vertices wi0 − bi1 − wi1 − bi2 − ...− biri − w

i
ri where

wi0 = vi and wiri = ti of ΓX for i = 1, 2. The terminal linear subgraphs T1, T2 of ΓX intersect the horned tree H at
the subgraphs wi0 − bi1 − wi1 and by lemma 6.1 at least one of the terminal linear subgraph T1, T2 contains k + 1 edges
with label 2. Therefore at least one of the terminal linear subgraphs of T1, T2 whose initial vertex is wi1 and whose
terminal vertex is ti is an O-string with k edges with label 2.

Lemma 6.3. Let X be a pruned trivalent 2-stratifold where ΓX has a label 2 for all edges incident to a terminal white
vertex of genus 0. Let ΓX have one white terminal vertex of genus −1 with incident edge label 1 while all other white
vertices are genus 0, all terminal vertices are white, and all white vertices are of degree ≤ 2. If π1(X) is finite then all
of the following hold:

1. Let L be a linear subgraph of ΓX whose initial vertex v is the white vertex of genus −1 and whose terminal
vertex w is a terminal vertex of ΓX where w 6= v. Then L is an O-string.

2. The fundamental group π1(X) is isomorphic to Z2k+1 where the integer k > 0 corresponds to the minimal
number of edges with label 2 in all L whose initial vertex v is the white vertex of genus −1 and whose terminal
vertex w is a terminal vertex of ΓX where w 6= v.

Proof. It follows by theorem 5.4, the fundamental group π1(X) is finite implies ΓX is a tree that contains no horned
trees. Let v be the terminal white vertex of genus −1.

Suppose that ΓX has no black vertices of degree 3. The graph ΓX is a linear graph. Orient the graph ΓX so that vertices
are ordered as w0− b1−w1− b2− ...− br−wr with corresponding edge labels m1−n1− . . .−mr−nr and w0 = v.
By assumption the labels m1 = 1, n1 = 2 and mr = 1, nr = 2. If there exists a subgraph wi−1− bi−wi for 1 < i < r
with successive labels mi = 2, ni = 1 then ΓX contains a horned tree. Therefore each subgraph wi−1 − bi − wi for
1 < i < r has successive labels mi = 1, ni = 2. The graph ΓX is an O-string. L-prune ΓX , the resulting graph Γ′ is a
linear graph with vertices w0 − b′1 −w′1 where Γ′ = Γ′(1, 2r) and w0 has genus −1. A presentation of the fundamental
group of XΓ′ is given by:

{x1, y, c : x2r

1 = 1, x1 = c, cy2 = 1}.

This presentation is equivalent to:

{y : y2r+1

= 1}.
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Then π1(X) ∼= Z2r+1 where r is the number of edges with label 2 in the O-string ΓX .

Suppose that ΓX contains n > 1 black vertices of degree 3. Let b be a black vertex of degree 3 that is adjacent to the
vertices v1, v2, v3 such that vi is the initial vertex of a terminal linear subgraph Ti for i = 1, 2. (The black vertex b is an
outermost such vertex, in that at least two components of ΓX \ st(b) contains only vertices with degree < 3.) If Ti does
not contain v then Ti is p-string. If Ti contains v then by lemma 4.3.1, there exists another outermost black vertex b′
of degree 3 that is adjacent to the initial vertex of two terminal linear branches T ′1, T

′
2. Then T ′1 and T ′2 are terminal

p-strings. We assume that both T1 and T2 are terminal p-strings. Let the terminal vertices of Ti which are terminal
vertices of ΓX be called ti for i = 1, 2. Apply operation B1 to st(b) ∪ T1 ∪ T2. The resulting graph Γ′ has n− 1 black
vertices of degree 3. Let the associated p-string be called T ′ and let the terminal vertex of T ′ and Γ′ be called t′.

By the induction hypothesis, π1(XΓ′) is isomorphic to Z2k+1 for k > 0. The fundamental group π1(XΓ) is isomorphic
to π1(XΓ′).

Let L′ be a linear subgraph of Γ′ whose initial vertex is v and whose terminal vertex w′ is a terminal vertex of Γ′ where
v 6= w′. By the induction hypothesis L′ is an O-string. If L′ is disjoint from T ′ \ v3 then L′ is disjoint from T ′. By
remark 4.2, L′ is an O-string in ΓX that is disjoint from v3 ∪ st(b)∪T1 ∪T2. We assume L′ is not disjoint from T ′ \ v3.
Then the terminal vertex w′ of L′ is t′ which is the terminal vertex of T ′. By Lemma 6.1 it follows that every linear
subgraph L of ΓX whose initial vertex is v and whose terminal vertex is ti of ΓX is an O-string.

By the induction hypothesis, there exists an O-string L′ of Γ′ whose initial vertex is v and whose terminal vertex w′ is
a terminal vertex of Γ′ where v 6= w′ and L′ contains k > 0 edges with label 2. The number k is minimal among all
such O-strings. If L′ is disjoint from T ′ \ v3 then L′ is disjoint from T ′. By remark 4.2, L′ is an O-string in ΓX that is
disjoint from v3 ∪ st(b) ∪ T1 ∪ T2. We assume L′ is not disjoint from T ′ \ v3. Then the terminal vertex w′ of L′ is t′
which is the terminal vertex of T ′. By Lemma 6.1 there exists an O-string of ΓX whose initial vertex is v and whose
terminal vertex is ti of ΓX with exactly k edges with label 2 for some i = 1, 2.

The proofs for lemma 6.4 lemma and 6.3 are similar for the case when ΓX contains k > 1 black vertices of degree 3.
We will abbreviate the proof for lemma 6.4 by only showing the case when ΓX contains no black vertices of degree 3

Lemma 6.4. Let X be a pruned trivalent 2-stratifold where ΓX has a label 2 for all edges incident to a terminal white
vertex of genus 0. Let ΓX have all white vertices of genus 0, one black terminal vertex, and all white vertices are of
degree ≤ 2. If π1(X) is finite then all of the following hold:

1. Let L be a linear subgraph of ΓX whose initial vertex v is the white vertex adjacent to the black terminal
vertex and whose terminal vertex w is a white terminal vertex of ΓX . Then L is an O-string.

2. The fundamental group π1(X) is isomorphic to Z3(2k) where the integer k > 0 corresponds to the minimal
number of edges with label 2 in all L whose initial vertex v is the white vertex adjacent to the black terminal
vertex and whose terminal vertex w is a white terminal vertex of ΓX .

Proof. The graph ΓX is a tree that contains no horned trees by theorem 5.4. Let b′′ be the black terminal vertex of ΓX
and let v be the white vertex adjacent to b′′.

Suppose that ΓX has no black vertices of degree 3. The graph ΓX is a linear graph. Orient the graph ΓX so that vertices
are ordered as b1 − w1 − b2 − ... − br+1 − wr+1 with corresponding edge labels n1 − . . . −mr+1 − nr+1 where
b1 = b′′. By assumption the labels mr = 1, nr = 2. If there exists a subgraph wi−1 − bi − wi for 1 < i < r + 1
with successive labels mi = 2, ni = 1 then ΓX contains a horned tree. Therefore each subgraph wi−1 − bi − wi for
1 < i < r+ 1 has successive labels mi = 1, ni = 2. The linear graph L with initial vertex w1 and terminal vertex wr+1

in ΓX is an O-string. L-prune the subgraph w1 − b2 − ...− br+1 − wr+1 of ΓX , the resulting graph Γ′ has vertices
b1 − w′1 − b′2 − w′2 with successive edge labels 3, 1, 2r. A presentation of the fundamental group of XΓ′ is given by:

{x1 : x3∗2r

1 = 1}.

Then π1(X) ∼= Z3∗2r where r is the number of edges with label 2 in the O-string L.

The dihedral group of order 2n will be denoted by Dn.
Lemma 6.5. Let X be a pruned trivalent 2-stratifold where ΓX has a label 2 for all edges incident to a terminal white
vertex of genus 0. Let ΓX have all white vertices of genus 0, all terminal vertices are white, and there is exactly one
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white vertex v′′ of degree 3 while all other white vertices are of degree ≤ 2. Let ei be the edges incident to v′′ for
1 ≤ i ≤ 3. Let Li be a linear subgraph of ΓX whose initial vertex is v′′, whose terminal vertex w is a terminal vertex
of ΓX , and Li contains ei. If π1(X) is finite then all of the following hold:

1. The linear subgraph Li is an O-string.

2. There exists an Li for i = 1, 2 of ΓX that contains only one edge labelled with 2.

3. The fundamental group π1(X) is isomorphic to D2k , where the integer k > 0 corresponds to the minimal
number of edges with label 2 in all L3 of ΓX .

Proof. The graph ΓX is a tree that contains neither a horned tree disjoint from v′′ nor a horned tree with v′′ as a terminal
vertex by theorem 5.4.

Suppose that ΓX has no black vertices of degree 3. Define Li to be the linear subgraph whose initial vertex is v′′, whose
terminal vertex is a terminal vertex of ΓX , and Li contains the edge ei. Since π1(X) is finite, each Li is a p-string of
length 2pi. A presentation of π1(X) is given by the following:

{c1, c2, c3 : c2
p1

1 = 1, c2
p2

2 = 1, c2
p3

3 = 1, c1c2c3 = 1}.

Then π1(X) is an F -group. Each pi > 0 and so the presentation represents a finite non-cyclic F -group. Therefore
without a loss of generality, we have p1 = 1, p2 = 1, and p3 ≥ 1. It follows that L1, L2 are p-strings of length 2, L3 is
a p-string of length 2p3, and π1(XΓ) is the dihedral group D2p3 .

Suppose that ΓX contains n > 0 black vertices of degree 3. Let b be a black vertex of degree 3 that is adjacent to the
vertices v1, v2, v3 such that vi is the initial vertex of a terminal linear subgraph Ti for i = 1, 2. Since π1(X) is finite,
Ti is a p-string. Let the terminal vertex of Ti, which is terminal vertices of ΓX , be called ti. Apply operation B1 to
st(b) ∪ T1 ∪ T2. Let the associated p-string be called T ′ and let the terminal vertex of T ′ and Γ′ be called t′.

The fundamental group π1(XΓ) is isomorphic to π1(XΓ′) and by the induction hypothesis, π1(XΓ′) is isomorphic to
D2k for k > 0.

Let L′ be a linear subgraph of Γ′ whose initial vertex is v′′ and whose terminal vertex w′ is a terminal vertex of Γ′.
Then L′ is an O-string. If L′ is disjoint from T ′ \ v3 then L′ is disjoint from T ′. Therefore L′ is an O-string in ΓX that
is disjoint from v3 ∪ st(b) ∪ T1 ∪ T2. Now assume L′ is not disjoint from T ′ \ v3. Then the terminal vertex w′ of L′ is
t′ which is the terminal vertex of T ′. It follows by Lemma 6.1 that every linear subgraph L of ΓX whose initial vertex
is v′′ and whose terminal vertex is ti of ΓX is an O-string.

By the induction hypothesis, there exists an O-string L′i that contains ei with initial vertex is v′′, terminal vertex is a
terminal vertex of Γ′, and exactly pi edges with label 2 where pi = 1 if i = 1, 2 and pi ≥ 1 if i = 3. If L′i is disjoint
from T ′ \ v3 then L′i is contained in ΓX and the result follows. If L′i is not disjoint from T ′ \ v3 then the terminal vertex
w′ of L′ is t′ which is the terminal vertex of T ′. By Lemma 6.1 there exists an O-string of ΓX whose initial vertex is
v′′ and whose terminal vertex is ti of ΓX with exactly pi edges with label 2.

7 Trivalent 2-stratifolds with Finite Fundamental Group

We describe the necessary and sufficient conditions on a trivalent 2-stratifold X for π1(XΓ) to be finite. All X in this
section are assumed to be trivalent and satisfy a set of necessary conditions from lemma 2.2. A 2-stratifold XΓ with
a graph Γ that contains a vertex of genus −1 or a black terminal vertex is never 1-connected. For graphs Γ with all
white terminal vertices and all white vertices of genus 0, the associated 2-stratifold XΓ can be 1-connected. We further
assume that XΓ is not 1-connected and XΓ is pruned.

We define core-reduced graphs for XΓ which are pruned subgraphs of ΓX that carry the fundamental group information
of XΓ.

A vertex of Γ with degree > 2 will be called a branch vertex. Let b0 be a black branch vertex of distance 1 from a
terminal vertex w0 and let C1, C2 be subgraphs of Γ corresponding to the components of Γ \ (st(b0) ∪ w0). Then such
a black branch vertex b0 is an called outermost if at least one Ci contains no black branch vertices distance 1 to a
terminal vertex. We refer to a labelled graph Γ as 1-connected if XΓ is 1-connected.

If the graph Γ does not contain a black branch vertex of distance 1 to a terminal vertex then Γ is core-reduced. If
Γ contains a black branch vertex of distance 1 to a terminal vertex we let B = {b01, . . . , b0k} be the set of all
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outermost black branch vertices where each b0i has distance 1 from a terminal vertex w0i. Choose a component of
Γ \ (st(b0i) ∪ w0i) corresponding to a subgraph Ci of Γ that does not contain a black branch vertex of distance 1 to a
terminal vertex to be denoted T0i. If there exists at least two components T0i that are not 1-connected let Γ0 = ∅. If
one component T0i is not 1-connected and Γ \ (T0i ∪ st(b0i) ∪ w0i) is not 1-connected then let Γ0 = ∅. If each T0i is
1-connected and Γ \ (T0i ∪ st(b0i)∪w0i) is not 1-connected then let Γ′0 = Γ \ (

⋃
st(b0i)∪

⋃
w0i ∪

⋃
T0i). If exactly

one component T0i is not 1-connected and Γ \ (T0i ∪ (st(b0i) ∪ w0i) is 1-connected then let Γ′0 = T0i. If Γ′0 is pruned
then let Γ0 = Γ′0, otherwise let Γ0 be the pruned Γ′0. For Γ0 6= ∅, we have that π1(XΓ) ∼= π1(XΓ0

) since r−1(bi0) is
contractible in XΓ. For Γ0 = ∅, we have that π1(XΓ) is infinite.

By induction, If Γn−1 contains a black branch vertex of distance 1 to a terminal vertex we let Bn−1 =
{bn−1,1, . . . , bn−1,kn−1

} be the set of all outermost black branch vertices where each bn−1,i has distance 1 from
a terminal vertex wn−1,i. Choose a component of Γn−1 \ (st(bn−1,i) ∪ wn−1,i) corresponding to a subgraph Ci of
Γn−1 that does not contain a black branch vertex of distance 1 to a terminal vertex to be denoted Tn−1,i. If there exists
at least two components Tn−1,i that are not 1-connected let Γn = ∅. If one component Tn−1,i is not 1-connected
and Γ \ (Tn−1,i ∪ st(bn−1,i) ∪ wn−1,i) is not 1-connected then let Γn = ∅. If each Tn−1,i is 1-connected and
Γ \ (Tn−1,i ∪ st(bn−1,i)∪wn−1,i) is not 1-connected then let Γ′n = Γn−1 \ (

⋃
st(bn−1,i)∪

⋃
wn−1,i ∪

⋃
Tn−1,i). If

exactly one component Tn−1,i is not 1-connected and Γn−1 \ (Tn−1,i ∪ st(bn−1,i) ∪ wn−1,i) is 1-connected then let
Γ′n = Tn−1,i. If Γ′n is pruned the let Γn = Γ′n, otherwise let Γn be the pruned Γ′n.

We define our core reduced graph ΓC of Γ as follows:

ΓC =

{∅, if Γn = ∅ for some n ≥ 0, otherwise
Γn, for the smallest n such that Γn does not contain a black branch vertex of

distance 1 to a terminal vertex

For a core reduced graph ΓC of Γ where ΓC 6= ∅, we have that π1(XΓ) ∼= π1(XΓC
). While if ΓC = ∅ then π1(XΓ) is

infinite.

A pseudo-projective plane of order k > 2 is a 2-stratifold that is obtained by attaching a 2-cell to a circle by the map
z → zk. A pseudo-projective plane of order 3 is a trivalent 2-stratifold. A closed 2-manifold is considered to be a
trivalent 2-stratifold.

22
2

3

2

3

Figure 5: A trivalent graph Γ and its core reduced graph ΓC .

Lemma 7.1. Let Γ be a bicolored pruned trivalent graph such that XΓ is a trivalent 2-stratifold that has finite
(nontrivial) fundamental group. Let ΓC be the core reduced graph of Γ. Then Γ is one of the cases below:

1. The graph Γ has exactly one black terminal vertex and all white vertices are genus 0. Then the graph ΓC
contains exactly one black terminal vertex, all white vertices are genus 0, and either all edges of ΓC incident
to a terminal white vertex have label 2 or XΓC

is a pseudo-projective plane of order 3.

2. The graph Γ has exactly one white vertex of genus −1 while all other white vertices are genus 0 and all
terminal vertices are white. Then the graph ΓC either contains one white vertex of genus −1 while all other
white vertices are genus 0, all terminal vertices are white, and all edges of ΓC incident to a terminal white
vertex of genus 0 have label 2 or XΓC

is a projective plane.
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3. The graph Γ has all white terminal vertices and white vertices are of genus 0. Then the graph ΓC contains all
white vertices of genus 0, all terminal vertices are white, and all edges of ΓC incident to a terminal vertex
have label 2.

Proof. The graph ΓC is a pruned subgraph of Γ. Since π(XΓ) is finite, ΓC 6= ∅.
(1.) The graph ΓC contains at most one black terminal vertex and all white vertices are of genus 0. Suppose that
ΓC does not contain a black terminal vertex. If Γ is not 1-connected then ΓC is not 1-connected. Let Γ0 be the
subgraph of Γ corresponding to ΓC . Attach to each black vertex that is not the terminal black vertex and is not
contained in the subgraph Γ0 of Γ a white vertex of genus 0 with edge label 1. Then there is an epimorphism from
π1(XΓ)→ Z3 ? π1(XΓC

). The graph ΓC contains a black terminal vertex.

The graph ΓC contains no terminal q-strings and no black branch vertex of distance 1 to a terminal vertex. Let v be a
white terminal vertex of ΓC . If v is not contained in a terminal p-string then v is adjacent to the black terminal vertex
and XΓC

is a pseudo-projective plane of order 3. Otherwise v is contained in a terminal p-string and the edge label
incident to v is 2.

(2.) The graph ΓC contains at most one white vertex of genus −1 while all other vertices are genus 0 and all terminal
vertices are white. Suppose that ΓC does not contain a white vertex of genus −1. If Γ is not 1-connected then ΓC is not
1-connected. Let Γ0 be the subgraph of Γ corresponding to ΓC . Attach to each black vertex not contained in the subgraph
Γ0 of Γ a white vertex of genus 0 with edge label 1. Then there is an epimorphism from π1(XΓ) → Z2 ? π1(XΓC

).
The graph ΓC contains the white vertex of genus −1.

The graph ΓC contains no terminal q-strings and no black branch vertex of distance 1 to a terminal vertex. If ΓC
contains a white terminal vertex v of genus 0 then v is contained in a terminal p-string and the edge label incident to v
is 2. If ΓC contains no white terminal vertices of genus 0 then XΓC

is a projective plane.

(3.) The graph ΓC contains all white terminal vertices and all white vertices are of genus 0. The graph ΓC contains no
terminal q-strings and no black branch vertex of distance 1 to a terminal vertex. If v is a white terminal vertex of genus
0 then the incident edge label is 2.

We determine the finite trivalent 2-stratifold groups.
Theorem 7.2. Let Γ be a bicolored pruned trivalent graph. If XΓ has finite fundamental group then π1(XΓ) is
isomorphic to either Z2k+1 , Z3∗2k , D2k+1 where k ≥ 0.

Proof. Let ΓC be the core reduced graph of Γ.

Suppose that Γ has exactly one black terminal vertex and all white vertices are genus 0. By lemma 7.1, the graph
ΓC contains exactly one black terminal vertex, all white vertices are genus 0, and either all edges of ΓC incident to
a terminal white vertex have label 2 or XΓC

is a pseudo-projective plane of order 3. If XΓC
is a pseudo-projective

plane of order 3 then π1(XΓ) ∼= Z3. Otherwise by theorem 5.4, ΓC has all white vertices of degree ≤ 2, and contains
no horned tree. Let L be a linear subgraph of ΓC whose initial vertex v is the white vertex adjacent to the black
terminal vertex and whose terminal vertex w is a white terminal vertex of ΓC . Then by lemma 6.4, L is an O-string,
π1(XΓC

) ∼= Z3∗2k where k > 0, and the integer k corresponds to the minimal number of edges with label 2 in all L
whose initial vertex v is the white vertex adjacent to the black terminal vertex and whose terminal vertex w is a white
terminal vertex of ΓC .

Suppose that Γ has exactly one white vertex of genus −1 while all other white vertices are genus 0 and all terminal
vertices are white. By lemma 7.1, the graph ΓC either contains one white vertex of genus −1 while all other white
vertices are genus 0, all terminal vertices are white, and all edges of ΓC incident to a terminal white vertex of genus 0
have label 2 or XΓC

is a projective plane. If XΓC
is a projective plane then π1(XΓ) ∼= Z2. Otherwise by theorem 5.4,

the white vertex of genus −1 of ΓC is terminal and has incident edge label 1, ΓC contains all white vertices of degree
≤ 2, and ΓC contains no horned tree. Let L be a linear subgraph of ΓC whose initial vertex v is the white vertex of
genus −1 and whose terminal vertex w is a white terminal vertex of ΓC where w 6= v. Then by lemma 6.3, L is an
O-string, π1(XΓC

) ∼= Z2k where k > 1, and the integer k corresponds to the minimal number of edges with label 2 in
all L whose initial vertex v is the white vertex of genus −1 and whose terminal vertex w is a white terminal vertex of
ΓC .

Suppose that Γ contains all white vertices of genus 0 and all terminal vertices are white. By lemma 7.1, ΓC contains all
white vertices of genus 0, all terminal vertices are white and all edges of ΓC incident to a terminal white vertex has
label 2. By theorem 5.4, either ΓC has all white vertices of degree ≤ 2 and contains at most one horned tree or ΓC has
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exactly one white vertex v′′ of degree 3 while all other white vertices are of degree ≤ 2 and contains no horned tree HT

such that either v′′ and HT are disjoint or v′′ is a terminal vertex of HT . We now look at these two cases.

Suppose that ΓC has all white vertices of degree ≤ 2 and contains at most one horned tree. By lemma 6.2, ΓC contains
a horned tree HT and if L is a linear subgraph of ΓC whose initial vertex v is a terminal vertex of HT and whose
terminal vertex w is a white terminal vertex of ΓC where L ∩HT = v and w 6= v then L is an O-string. Further by
lemma 6.2, π1(XΓC

) ∼= Z2k+1 where the integer k = 0 if HT contains a terminal vertex of ΓX and k > 0 otherwise.
The integer k > 0 corresponds to the minimal number of edges with label 2 in all linear subgraphs L whose initial
vertex v is a terminal vertex of HT and whose terminal vertex w is a terminal vertex of ΓX where L ∩HT = v and
w 6= v.

Suppose that ΓC has exactly one white vertex v′′ of degree 3 while all other white vertices are of degree < 3, and
contains no horned tree HT such that either v′′ and HT are disjoint or v′′ is a terminal vertex of HT . Let ei be the
edges incident to v′′ for 1 ≤ i ≤ 3. Let Li be a linear subgraph of ΓX whose initial vertex is v′′, whose terminal vertex
w is a terminal vertex of ΓX , and Li contains ei. By lemma 6.5, the linear subgraph Li is an O-string, there exists an
Li for i = 1, 2 of ΓX that contains only one edge labelled with 2, and the fundamental group π1(X) is isomorphic to
D2k , where the integer k > 0 corresponds to the minimal number of edges with label 2 in all L3 of ΓX .

We now state our main classification results.
Theorem 7.3. Let Γ be a bicolored pruned trivalent graph. Then π1(XΓ) ∼= Z3 if and only if the following hold:

1. The graph Γ is a tree that has exactly one black terminal vertex, all white vertices are genus 0;

2. The core reduced graph ΓC 6= ∅, ΓC is the core reduced graph of Fig. 4.3, and XΓC
is a pseudo-projective

plane of order 3.

Proof. Suppose π1(XΓ) ∼= Z3. Since π1(XΓ) is finite the result follows from the proof of theorem 7.2. Suppose that
condition 1. and 2. holds. Then π1(XΓC

) ∼= Z3 and π1(XΓ) ∼= π1(XΓC
).

Theorem 7.4. Let Γ be a bicolored pruned trivalent graph. Then π1(XΓ) ∼= Z3∗2k for k > 0 if and only if the following
hold:

1. The graph Γ is a tree that has exactly one black terminal vertex and all white vertices are genus 0;

2. The core reduced graph ΓC 6= ∅ and all edges of ΓC incident to a terminal white vertex of genus 0 have label
2;

3. The graph ΓC contains exactly one black terminal vertex, all white vertices are genus 0 and have degree ≤ 2,
and the graph ΓC contains no horned trees;

4. Let L be an linear subgraph of ΓC whose initial vertex v is the white vertex adjacent to the black terminal
vertex and whose terminal vertex w is a white terminal vertex of ΓC . Then L is an O-string that contains
r ≥ k edges with label 2 and there exists at least one L that contains k edges with label 2.

Proof. Suppose π(XΓ) ∼= Z3∗2k for k > 0. Since π1(XΓ) is finite the result follows from the proof of theorem 7.2.

Suppose that conditions 1. thru 4. holds. By the proof of lemma 6.4, π1(XΓC
) ∼= Z3∗2k for k > 0 and π1(XΓ) ∼=

π1(XΓC
).

Theorem 7.5. Let Γ be a bicolored pruned trivalent graph. Then π1(XΓ) ∼= Z2 for if and only if either 1.(a)-1.(b) or
2.(a)-2.(e) are satisfied.

1. (a) The graph Γ has exactly one white vertex of genus −1 while all other white vertices are genus 0 and all
terminal vertices are white;

(b) The core reduced graph ΓC 6= ∅, ΓC is a single white vertex of genus −1 with no edges, and XΓC
is a

projective plane;

2. (a) The graph Γ contains all white vertices of genus 0 and all terminal vertices are white
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(b) The core reduced graph ΓC 6= ∅ and all edges of ΓC incident to a terminal vertex of genus 0 have label
2;

(c) The core reduced ΓC contains all white vertices of genus 0 and all white vertices are of degree ≤ 2, all
terminal vertices are white, and ΓC contains a horned tree HT .

(d) If L is a linear subgraph of ΓC whose initial vertex v is a terminal vertex of HT and whose terminal
vertex w is a terminal vertex of ΓC where L ∩HT = v and w 6= v then L is an O-string.

(e) The horned tree HT contains a terminal vertex of ΓC

Proof. Suppose π(XΓ) ∼= Z2. Since π1(XΓ) is finite the result follows from the proof of theorem 7.2.

Suppose that conditions 2.(a)-2.(e) holds. Then by the proof of lemma 6.2, π1(XΓC
) ∼= Z2 and π1(XΓ) ∼= π1(XΓC

).

Suppose that condition 1.(a)-1.(b) holds. Then π1(XΓC
) ∼= Z2 and π1(XΓ) ∼= π1(XΓC

).

Theorem 7.6. Let Γ be a bicolored pruned trivalent graph. Then π1(XΓ) ∼= Z2k+1 for k > 0 if and only if either
1.(a)-(d) or 2.(a)-(d) are satisfied.

1. (a) The graph Γ has exactly one white vertex of genus −1 while all other white vertices are genus 0 and all
terminal vertices are white

(b) The core reduced graph ΓC 6= ∅ and all edges of ΓC incident to a terminal vertex of genus 0 have label
2;

(c) The core subgraph ΓC has exactly one white terminal vertex of genus −1 with incident edge label 1 while
all other white vertices are genus 0, all white vertices are of degree ≤ 2 and all terminal vertices are
white, and ΓC contains no horned trees.

(d) Let L be a linear subgraph of ΓC whose initial vertex v is the white vertex of genus −1 and whose
terminal vertex w is a terminal vertex of ΓC where w 6= v. Then L is an O-string that contains r ≥ k
edges with label 2 and there exists at least one L that contains k edges with label 2.

2. (a) The graph Γ contains all white vertices of genus 0 and all terminal vertices are white
(b) The core reduced graph ΓC 6= ∅ and all edges of ΓC incident to a terminal vertex of genus 0 have label

2;
(c) The core reduced graph ΓC contains all white vertices of genus 0 and are of degree ≤ 2, all terminal

vertices are white, and ΓC contains a horned tree HT .
(d) Let L be a linear subgraph of ΓC whose initial vertex v is a terminal vertex of HT and whose terminal

vertex w is a terminal vertex of ΓC where L ∩HT = v and w 6= v. Then L is an O-string that contains
r ≥ k edges with label 2 and there exists at least one L that contains k edges with label 2.

Proof. Suppose π(XΓ) ∼= Z2k+1 . Since π1(XΓ) is finite the result follows from the proof of theorem 7.2.

Suppose that either conditions 1.(a)-1.(d) or 2.(a)-2.(d) holds. Then by the proof of lemma 6.3 or lemma 6.2 respectively,
π1(XΓC

) ∼= Z2k+1 and π1(XΓ) ∼= π1(XΓC
).

Theorem 7.7. Let Γ be a bicolored pruned trivalent graph. Then π1(XΓ) ∼= D2k+1 for k ≥ 0 if and only if the
following hold:

1. The graph Γ is a tree that has all white terminal vertices and white vertices are of genus 0

2. The core reduced graph ΓC 6= ∅ and all edges of ΓC incident to a terminal white vertex of genus 0 have label
2;

3. The core reduced graph ΓC has all white vertices of genus 0 and all terminal vertices are white, there is
exactly one white vertex v′′ of degree 3 while all other white vertices are of degree ≤ 2, and ΓC contains no
horned tree HT such that either v′′ and HT are disjoint or v′′ is a terminal vertex of HT

4. Let Li be a linear subgraph of ΓC whose initial vertex is v′′, whose terminal vertex w is a terminal vertex
of ΓC , and Li contains ei. The linear subgraph Li is an O-string, there exists an Li for i = 1, 2 of ΓC that
contains only one edge labelled with 2, and all L3 contains r ≥ k edges with label 2 and there exists at least
one L3 that contains k edges with label 2.
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Proof. Suppose π(XΓ) ∼= D2k+1 for k > 0. Since π1(XΓ) is finite the result follows from the proof of theorem 7.2.

Suppose that either conditions 1-4 holds. Then by the proof of lemma 6.5, π1(XΓC
) ∼= D2k+1 and π1(XΓ) ∼= π1(XΓC

).

3

2 2

2 2

2

2

2

2

2

2

2

2

Figure 6: A trivalent graph Γ and its core reduced graph ΓC that satisfies the conditions of Theorem 7.4.
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