
Pseudorandom Generators
and The Pseudo One Time

Pad
Lecture 6

Review – Security

Perfect secrecy and
indistinguishability

Perfect secrecy and
indistinguishability

• Requires that absolutely no information about
the plaintext is leaked, even to eavesdroppers
with unlimited computational power

Perfect secrecy and
indistinguishability

• Requires that absolutely no information about
the plaintext is leaked, even to eavesdroppers
with unlimited computational power

•  is perfectly indistinguishable  is
perfectly secret

Perfect secrecy

• Encryption scheme (Gen, Enc, Dec) with message
space M and ciphertext space C is perfectly secret if
for every distribution over M, every m M, and
every c  C with Pr[C=c] > 0, it holds that

Pr[M = m | C = c] = Pr[M = m].

Perfect indistinguishability

• Let =(Gen, Enc, Dec) be an encryption
scheme with message space M, and A an

adversary

Perfect indistinguishability

• Let =(Gen, Enc, Dec) be an encryption
scheme with message space M, and A an
adversary

• Define a randomized exp’t PrivKA,:
1. A outputs m0, m1 M

2. k  Gen, b  {0,1}, c  Enck(mb)

3. b’  A(c)

Adversary A succeeds if b = b’, and we say the
experiment evaluates to 1 in this case

Perfect indistinguishability

•  is perfectly indistinguishable if for all
attackers (algorithms) A, it holds that

Pr[PrivKA, = 1] = ½

Perfect indistinguishability

•  is perfectly indistinguishable if for all
attackers (algorithms) A, it holds that

Pr[PrivKA, = 1] = ½

•  is perfectly indistinguishable =>  is
perfectly secret

Computational secrecy

Computational secrecy

• Would be ok if a scheme leaked information
with tiny probability to eavesdroppers with
bounded computational resources

Computational secrecy

• Would be ok if a scheme leaked information
with tiny probability to eavesdroppers with
bounded computational resources

• Relax perfect secrecy by

– Allowing security to “fail” with negligible
probability

– Restricting attention to PPT attackers

Asymptotic security

• Introduce security parameter n

Asymptotic security

• Introduce security parameter n

– For now, think of n as the key length

– Chosen by honest parties when they
generate/share key

• Allows users to tailor the security level

– Known by adversary

Asymptotic security

• Introduce security parameter n
– For now, think of n as the key length

– Chosen by honest parties when they
generate/share key
• Allows users to tailor the security level

– Known by adversary

• Measure running times of all parties, and the
success probability of the adversary, as
functions of n

Computational indistinguishability
(asymptotic)

Computational indistinguishability
(asymptotic)

• Computational indistinguishability:

– Security may fail with probability negligible in n

– Restrict attention to attackers running in time (at
most) polynomial in n

Computational indistinguishability
(asymptotic)

• Computational indistinguishability:

– Security may fail with probability negligible in n

– Restrict attention to attackers running in time (at
most) polynomial in n

• A scheme is secure: if for every probabilistic
polynomial-time adversary A carrying out an attack
of some specifed type, the probability that A
succeeds in this attack is negligible.

Definitions

• A function f: Z+→ Z+ is polynomial if there

exists {𝑐𝑖} such that f(n) < σ𝑖 𝑐𝑖 𝑛
𝑖

Definitions

• A function f: Z+→ Z+ is polynomial if there

exists {𝑐𝑖} such that f(n) < σ𝑖 𝑐𝑖 𝑛
𝑖

• A function f: Z+→ [0,1] is negligible if for
every polynomial p it holds that f(n) < 1/p(n)
for large enough n

Example

• The following functions are all negligible :

–
1

2𝑛

– 2− 𝑛

– 𝑛−log(𝑛)

–
𝑓(𝑛)

2𝑛
where f(n) is a polynomial

Closure Properties

• Let 𝑛1 and 𝑛2 be negligible functions.

Closure Properties

• Let 𝑛1 and 𝑛2 be negligible functions.

–1. Then 𝑛1(n)+ 𝑛1(n) is negligible.

Closure Properties

• Let 𝑛1 and 𝑛2 be negligible functions.

–1. Then 𝑛1(n)+ 𝑛1(n) is negligible.

–2. For any positive polynomial p, the

function p(n) ∗ 𝑛1(n) is negligible.

Example

• The function
𝑓(𝑛)

2𝑛
is negligible where f(n) is a

positive polynomial.

Example

• The function
𝑓(𝑛)

2𝑛
is negligible where f(n) is a

positive polynomial.

• Proof

–1.
1

2𝑛
is negligible

Example

• The function
𝑓(𝑛)

2𝑛
is negligible where f(n) is a

positive polynomial.

• Proof

–1.
1

2𝑛
is negligible

–2. f(n) is a polynomial, hence
𝑓(𝑛)

2𝑛
𝑖𝑠 𝑛𝑒𝑔𝑙

Deterministic/Probabilistic

Deterministic/Probabilistic

• An algorithm A is deterministic if for any input
c, the output A(c) = A(c) for every application
of A.

Deterministic/Probabilistic

• An algorithm A is deterministic if for any input
c, the output A(c) = A(c) for every application
of A.

• An algorithm A is probabilistic if for any input
c, the output A(c) need not be equal to A(c)
for every application of A.

Deterministic/Probabilistic

• A probabilistic algorithm with running time p
and an input of length n, yields an unbiased
random bits string of length p(n) where each
bit is independently equal to 1 with
probability 1/2 and 0 with probability 1/2.

(Re)defining encryption

• A private-key encryption scheme is defined by
three PPT algorithms (Gen, Enc, Dec):

– Gen: takes as input 1n; outputs k. (Assume |k|≥n.)

– Enc: takes as input a key k and message m{0,1}*;
outputs ciphertext c

c Enck(m)

– Dec: takes key k and ciphertext c as input; outputs
a message m or “error”

Computational indistinguishability
(asymptotic version)

• Fix a scheme  and some adversary A

• Define a randomized exp’t PrivKA,(n):

1. A(1n) outputs m0, m1  {0,1}* of equal length

2. k  Gen(1n), b  {0,1}, c  Enck(mb)

3. b’  A(c)

Adversary A succeeds if b = b’, and we say the
experiment evaluates to 1 in this case

Computational indistinguishability
(asymptotic version)

•  is computationally indistinguishable if for all
PPT attackers A, there is a negligible function 
such that

Pr[PrivKA,(n) = 1] ≤ ½ + (n)

Pseudorandomness

Pseudorandomness

Pseudorandomness

• Important building block for computationally
secure encryption

Pseudorandomness

• Important building block for computationally
secure encryption

• Important concept in cryptography

What does “random” mean?

What does “random” mean?

• What does “uniform” mean?

What does “random” mean?

• What does “uniform” mean?

• Which of the following is a uniform string?

What does “random” mean?

• What does “uniform” mean?

• Which of the following is a uniform string?

– 0101010101010101

– 0010111011100110

– 0000000000000000

What does “random” mean?

• What does “uniform” mean?

• Which of the following is a uniform string?

– 0101010101010101

– 0010111011100110

– 0000000000000000

• If we generate a uniform 16-bit string, each of
the above occurs with probability 2-16

What does “uniform” mean?

• “Uniformity” is not a property of a string, but
a property of a distribution

• A distribution on n-bit strings is a function
D: {0,1}n → [0,1] such that x D(x) = 1

– The uniform distribution on n-bit strings, denoted
Un, assigns probability 2-n to every x  {0,1}n

What does “uniform” mean?

• “Uniformity” is not a property of a string, but
a property of a distribution

• A distribution on n-bit strings is a function
D: {0,1}n → [0,1] such that x D(x) = 1

– The uniform distribution on n-bit strings, denoted
Un, assigns probability 2-n to every x  {0,1}n

Example

• Binary Strings of Length 2: pr(b) = 1/4

{01,10,00,11}

Example

• Binary Strings of Length 2: pr(b) = 1/4

{01,10,00,11}

• Binary Strings of Length 4: pr(b) =
1

2

4

{ 0000 0001 0010 0011 0100 0101

0110 0111 1000 1001 1010 1011

1100 1101 1110 1111 }

What does “pseudorandom” mean?

What does “pseudorandom” mean?

• Informal: cannot be distinguished from
uniform (i.e., random)

What does “pseudorandom” mean?

• Informal: cannot be distinguished from
uniform (i.e., random)

• Which of the following is pseudorandom?

– 0101010101010101

– 0010111011100110

– 0000000000000000

What does “pseudorandom” mean?

• Informal: cannot be distinguished from
uniform (i.e., random)

• Which of the following is pseudorandom?

– 0101010101010101

– 0010111011100110

– 0000000000000000

• Pseudorandomness is a property of a
distribution, not a string

Pseudorandomness (concrete)

• x  D means “sample x according to D”

• Let D be a distribution on n-bit strings

• D is (t, )-pseudorandom if for all A running in
time at most t,

| Prx D[A(x)=1] - Prx Up
[A(x)=1] | ≤ 

Pseudorandomness (asymptotic)

• Security parameter n, polynomial p

• Let Dn be a distribution over p(n)-bit strings

• Pseudorandomness is a property of a
sequence of distributions {Dn} = {D1, D2, … }

Pseudorandomness (asymptotic)

• {Dn} is pseudorandom if for all probabilistic,
polynomial-time distinguishers A, there is a
negligible function  such that

| Prx Dn
[A(x)=1] - Prx Up(n)

[A(x)=1] | ≤ (n)

Pseudorandom
generators (PRGs)

Pseudorandom generators (PRGs)

• A PRG is an efficient, deterministic algorithm
that expands a short, uniform seed into a
longer, pseudorandom output

Pseudorandom generators (PRGs)

• A PRG is an efficient, deterministic algorithm
that expands a short, uniform seed into a
longer, pseudorandom output

– Useful whenever you have a “small” number of
true random bits, and want lots of “random-
looking” bits

Pseudorandom generators (PRGs)

• A PRG is an efficient, deterministic algorithm
that expands a short, uniform seed into a
longer, pseudorandom output

– Useful whenever you have a “small” number of
true random bits, and want lots of “random-
looking” bits

PRGs

• Let G be a deterministic, poly-time algorithm
that is expanding, i.e., |G(x)| = p(|x|) > |x|

G

output

PRGs

• Let G be a deterministic, poly-time algorithm
that is expanding, i.e., |G(x)| = p(|x|) > |x|

seed

G

output

PRGs

• Let G be a deterministic, poly-time algorithm
that is expanding, i.e., |G(x)| = p(|x|) > |x|

PRGs

• Let G be a deterministic, poly-time algorithm
that is expanding, i.e., |G(x)| = p(|x|) > |x|

• G defines a sequence of distributions!

PRGs

• Let G be a deterministic, poly-time algorithm
that is expanding, i.e., |G(x)| = p(|x|) > |x|

• G defines a sequence of distributions!

– Dn = the distribution on p(n)-bit strings defined by
choosing x  Un and outputting G(x)

PRGs

• Let G be a deterministic, poly-time algorithm
that is expanding, i.e., |G(x)| = p(|x|) > |x|

• G defines a sequence of distributions!

– Dn = the distribution on p(n)-bit strings defined by
choosing x  Un and outputting G(x)

– PrDn
[y] = |{x : G(x)=y}|/2n

– Note that most y occur with probability 0

• I.e., Dn is far from uniform

PRGs

• G is a PRG iff {Dn} is pseudorandom

• I.e., for all efficient distinguishers A, there is a
negligible function  such that

| Prx Un
[A(G(x))=1] - Pry Up(n)

[A(y)=1] | ≤ (n)

• I.e., no efficient A can distinguish whether it is
given G(x) (for uniform x) or a uniform string y!

Example

Do PRGs exist?

• We don’t know…

– Would imply P  NP

• We will assume certain algorithms are PRGs

– Recall the 3 principles of modern crypto…

– This is what is done in practice

– We will return to this later in the course

• Can construct PRGs from weaker assumptions

– For details, see Chapter 7

Where things stand

• We saw that there are some inherent
limitations if we want perfect secrecy

– In particular, key must be as long as the message

• We defined computational secrecy, a
relaxed notion of security

• Can we overcome prior limitations?

Pseudo-one time pad

Recall: one-time pad

key

p bits

 ciphertext

p bits

message

p bits

“Pseudo” one-time pad

“pseudo” key

p bits



G

key

n bits

ciphertext

p bits

message

p bits

Pseudo one-time pad

• Let G be a deterministic algorithm, with
|G(k)| = p(|k|)

• Gen(1n): output uniform n-bit key k

– Security parameter n message space {0,1}p(n)

• Enck(m): output G(k) m

• Deck(c): output G(k)  c

• Correctness is obvious…

Security of pseudo-OTP?

• Would like to be able to prove security

– Based on the assumption that G is a PRG

Definitions, proofs, and assumptions

• We’ve defined computational secrecy

• Our goal is to prove that the pseudo OTP
meets that definition

• We cannot prove this unconditionally

– Beyond our current techniques…

– Anyway, security clearly depends on G

• Can prove security based on the assumption
that G is a pseudorandom generator

Security theorem

• If G is a pseudorandom generator, then the
pseudo one-time pad Π is secure (i.e.,
computationally indistinguishable)

Stepping back…

• Proof that the pseudo OTP is secure…

• …with some caveats

– Assuming G is a pseudorandom generator

– Relative to our definition

• The only ways the scheme can be broken are:

– If a weakness is found in G

– If the definition isn’t sufficiently strong…

Have we gained anything?

• YES: the pseudo-OTP has a key shorter than
the message

– n bits vs. p(n) bits

• The fact that the parties internally generate a
p(n)-bit temporary string to encrypt/decrypt is
irrelevant

– The key is what the parties share in advance

– Parties do not store the p(n)-bit temporary value

