Pseudorandom Generators and The Pseudo One Time Pad Lecture 6

Review – Security

Perfect secrecy and indistinguishability

Perfect secrecy and indistinguishability

• Requires that *absolutely no information* about the plaintext is leaked, even to eavesdroppers *with unlimited computational power*

Perfect secrecy and indistinguishability

• Requires that *absolutely no information* about the plaintext is leaked, even to eavesdroppers with unlimited computational power

 Π is perfectly indistinguishable ⇔ Π is perfectly secret

Perfect secrecy

Encryption scheme (Gen, Enc, Dec) with message space *M* and ciphertext space *C* is *perfectly secret* if for every distribution over *M*, every m ∈ *M*, and every c ∈ *C* with Pr[C=c] > 0, it holds that

$$Pr[M = m | C = c] = Pr[M = m].$$

 Let Π=(Gen, Enc, Dec) be an encryption scheme with message space *M*, and A an adversary

- Let Π=(Gen, Enc, Dec) be an encryption scheme with message space *M*, and A an adversary
- Define a randomized exp't $PrivK_{A,\Pi}$:
 - 1. A outputs $m_0, m_1 \in \mathcal{M}$
 - 2. $k \leftarrow \text{Gen}, b \leftarrow \{0,1\}, c \leftarrow \text{Enc}_k(m_b)$

3. b' \leftarrow A(c)

Adversary A *succeeds* if b = b', and we say the experiment evaluates to 1 in this case

• Π is *perfectly indistinguishable* if for all attackers (algorithms) A, it holds that $Pr[PrivK_{A,\Pi} = 1] = \frac{1}{2}$

- Π is *perfectly indistinguishable* if for all attackers (algorithms) A, it holds that $Pr[PrivK_{A,\Pi} = 1] = \frac{1}{2}$
- Π is perfectly indistinguishable => Π is perfectly secret

Computational secrecy

Computational secrecy

• Would be ok if a scheme leaked information with tiny probability to eavesdroppers with bounded computational resources

Computational secrecy

- Would be ok if a scheme leaked information with tiny probability to eavesdroppers with bounded computational resources
- Relax perfect secrecy by
 - Allowing security to "fail" with *negligible* probability
 - Restricting attention to PPT attackers

Asymptotic security

• Introduce *security parameter* n

Asymptotic security

- Introduce security parameter n
 - For now, think of n as the key length
 - Chosen by honest parties when they generate/share key
 - Allows users to tailor the security level
 - Known by adversary

Asymptotic security

- Introduce *security parameter* n
 - For now, think of n as the key length
 - Chosen by honest parties when they generate/share key
 - Allows users to tailor the security level
 - Known by adversary
- Measure running times of all parties, and the success probability of the adversary, as functions of n

Computational indistinguishability (asymptotic)

Computational indistinguishability (asymptotic)

- Computational indistinguishability:
 - Security may fail with probability *negligible in n*
 - Restrict attention to attackers running in time (at most) *polynomial in n*

Computational indistinguishability (asymptotic)

- Computational indistinguishability:
 - Security may fail with probability *negligible in n*
 - Restrict attention to attackers running in time (at most) *polynomial in n*
- A scheme is secure: if for every probabilistic polynomial-time adversary A carrying out an attack of some specifed type, the probability that A succeeds in this attack is negligible.

Definitions

• A function f: $Z^+ \rightarrow Z^+$ is *polynomial* if there exists $\{c_i\}$ such that f(n) < $\sum_i c_i n^i$

Definitions

• A function f: $Z^+ \rightarrow Z^+$ is *polynomial* if there exists $\{c_i\}$ such that f(n) < $\sum_i c_i n^i$

 A function f: Z⁺ → [0,1] is *negligible* if for <u>every</u> polynomial p it holds that f(n) < 1/p(n) for large enough n

• The following functions are all negligible :

$$-\frac{1}{2^{n}}$$
$$-2^{-\sqrt{n}}$$
$$-n^{-\log(n)}$$
$$-\frac{f(n)}{2^{n}}$$
 where f(n) is a polynomial

Closure Properties

• Let n_1 and n_2 be negligible functions.

Closure Properties

• Let n_1 and n_2 be negligible functions. -1. Then $n_1(n) + n_1(n)$ is negligible.

Closure Properties

• Let n_1 and n_2 be negligible functions. -1. Then $n_1(n) + n_1(n)$ is negligible.

-2. For any positive polynomial p, the function $p(n) * n_1(n)$ is negligible.

• The function $\frac{f(n)}{2^n}$ is negligible where f(n) is a positive polynomial.

• The function $\frac{f(n)}{2^n}$ is negligible where f(n) is a positive polynomial.

• Proof

$$-1.\frac{1}{2^n}$$
 is negligible

• The function $\frac{f(n)}{2^n}$ is negligible where f(n) is a positive polynomial.

• Proof

-1.
$$\frac{1}{2^n}$$
 is negligible

-2. f(n) is a polynomial, hence $\frac{f(n)}{2^n}$ is negl

An algorithm A is deterministic if for any input
 c, the output A(c) = A(c) for every application
 of A.

An algorithm A is deterministic if for any input
 c, the output A(c) = A(c) for every application
 of A.

 An algorithm A is probabilistic if for any input c, the output A(c) need not be equal to A(c) for every application of A.

 A probabilistic algorithm with running time p and an input of length n, yields an unbiased random bits string of length p(n) where each bit is independently equal to 1 with probability 1/2 and 0 with probability 1/2.

(Re)defining encryption

• A *private-key encryption scheme* is defined by three PPT algorithms (Gen, Enc, Dec):

- Gen: takes as input 1^n ; outputs k. (Assume $|k| \ge n$.)

Enc: takes as input a key k and message m∈{0,1}*;
 outputs ciphertext c

 $c \leftarrow Enc_k(m)$

 Dec: takes key k and ciphertext c as input; outputs a message m or "error" Computational indistinguishability (asymptotic version)

- Fix a scheme Π and some adversary A
- Define a randomized exp't PrivK_{A,Π}(n):
 - 1. A(1ⁿ) outputs $m_0, m_1 \in \{0,1\}^*$ of equal length
 - 2. $k \leftarrow \text{Gen}(1^n), b \leftarrow \{0,1\}, c \leftarrow \text{Enc}_k(m_b)$
 - 3. b' \leftarrow A(c)

Adversary A *succeeds* if b = b', and we say the experiment evaluates to 1 in this case

Computational indistinguishability (asymptotic version)

 Π is computationally indistinguishable if for all PPT attackers A, there is a negligible function ε such that

$$\Pr[\operatorname{PrivK}_{A,\Pi}(n) = 1] \le \frac{1}{2} + \varepsilon(n)$$

Pseudorandomness

Pseudorandomness

Pseudorandomness

 Important building block for computationally secure encryption

Pseudorandomness

 Important building block for computationally secure encryption

• Important concept in cryptography

• What does "uniform" mean?

- What does "uniform" mean?
- Which of the following is a uniform string?

- What does "uniform" mean?
- Which of the following is a uniform string?
 0101010101010101
 - 0010111011100110
 - 000000000000000

- What does "uniform" mean?
- Which of the following is a uniform string?
 - -0101010101010101
 - -0010111011100110
 - 000000000000000
- If we generate a uniform 16-bit string, each of the above occurs with probability 2⁻¹⁶

What does "uniform" mean?

• "Uniformity" is not a property of a *string*, but a property of a *distribution*

- A distribution on *n*-bit strings is a function D: $\{0,1\}^n \rightarrow [0,1]$ such that $\Sigma_x D(x) = 1$
 - The *uniform* distribution on *n*-bit strings, denoted U_n , assigns probability 2⁻ⁿ to every $x \in \{0,1\}^n$

What does "uniform" mean?

• "Uniformity" is not a property of a *string*, but a property of a *distribution*

- A distribution on *n*-bit strings is a function D: $\{0,1\}^n \rightarrow [0,1]$ such that $\Sigma_x D(x) = 1$
 - The *uniform* distribution on *n*-bit strings, denoted U_n , assigns probability 2⁻ⁿ to every $x \in \{0,1\}^n$

Example

Binary Strings of Length 2: pr(b) = 1/4
{01,10,00,11}

Example

Binary Strings of Length 2: pr(b) = 1/4
{01,10,00,11}

• Binary Strings of Length 4: pr(b) = $\left(\frac{1}{2}\right)^4$

{ 0000 0001 0010 0011 0100 0101
0110 0111 1000 1001 1010 1011
1100 1101 1110 1111 }

 Informal: cannot be distinguished from uniform (i.e., random)

- Informal: cannot be distinguished from uniform (i.e., random)
- Which of the following is pseudorandom?
 - -0101010101010101
 - -0010111011100110

- Informal: cannot be distinguished from uniform (i.e., random)
- Which of the following is pseudorandom?
 - -0101010101010101
 - -0010111011100110
- Pseudorandomness is a property of a *distribution*, not a *string*

Pseudorandomness (concrete)

• x ← D means "sample x according to D"

• Let D be a distribution on *n*-bit strings

D is (t, ε)-pseudorandom if for all A running in time at most t,
 | Pr_{x ← D}[A(x)=1] - Pr_{x ← Up}[A(x)=1] | ≤ ε

Pseudorandomness (asymptotic)

• Security parameter *n*, polynomial *p*

• Let D_n be a distribution over p(n)-bit strings

 Pseudorandomness is a property of a sequence of distributions {D_n} = {D₁, D₂, ... }

Pseudorandomness (asymptotic)

 {D_n} is *pseudorandom* if for all probabilistic, polynomial-time distinguishers A, there is a negligible function ε such that

$$| \Pr_{x \leftarrow D_n}[A(x)=1] - \Pr_{x \leftarrow U_{p(n)}}[A(x)=1] | \leq \varepsilon(n)$$

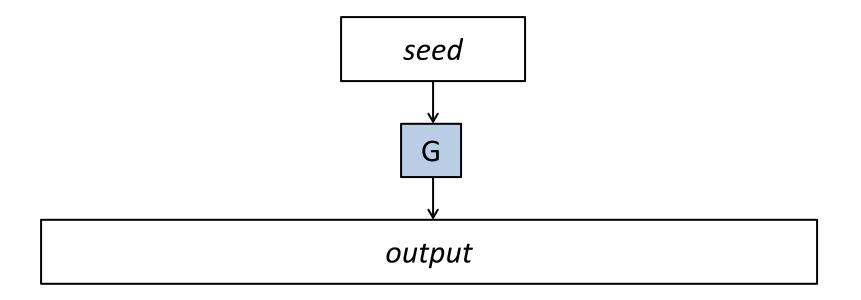
 A PRG is an efficient, deterministic algorithm that expands a *short, uniform seed* into a *longer, pseudorandom* output

- A PRG is an efficient, deterministic algorithm that expands a *short, uniform seed* into a *longer, pseudorandom* output
 - Useful whenever you have a "small" number of true random bits, and want lots of "randomlooking" bits

- A PRG is an efficient, deterministic algorithm that expands a *short, uniform seed* into a *longer, pseudorandom* output
 - Useful whenever you have a "small" number of true random bits, and want lots of "randomlooking" bits

 Let G be a deterministic, poly-time algorithm that is *expanding*, i.e., |G(x)| = p(|x|) > |x|

 Let G be a deterministic, poly-time algorithm that is *expanding*, i.e., |G(x)| = p(|x|) > |x|



 Let G be a deterministic, poly-time algorithm that is *expanding*, i.e., |G(x)| = p(|x|) > |x|

- Let G be a deterministic, poly-time algorithm that is *expanding*, i.e., |G(x)| = p(|x|) > |x|
- G defines a sequence of distributions!

- Let G be a deterministic, poly-time algorithm that is *expanding*, i.e., |G(x)| = p(|x|) > |x|
- G defines a sequence of distributions!
 - D_n = the distribution on p(n)-bit strings defined by choosing x $\leftarrow U_n$ and outputting G(x)

- Let G be a deterministic, poly-time algorithm that is *expanding*, i.e., |G(x)| = p(|x|) > |x|
- G defines a sequence of distributions!
 - D_n = the distribution on p(n)-bit strings defined by choosing x ← U_n and outputting G(x)

$$- \Pr_{D_n}[y] = |\{x : G(x)=y\}|/2^n$$

- Note that most y occur with probability 0
 - I.e., D_n is far from uniform

• G is a PRG iff {D_n} is pseudorandom

- I.e., for all efficient distinguishers A, there is a negligible function ε such that | $Pr_{x \leftarrow U_n}[A(G(x))=1] - Pr_{y \leftarrow U_p(n)}[A(y)=1] | \le \varepsilon(n)$
- I.e., no efficient A can distinguish whether it is given G(x) (for uniform x) or a uniform string y!

Example

Do PRGs exist?

• We don't know...

- Would imply $P \neq NP$

- We will *assume* certain algorithms are PRGs
 - Recall the 3 principles of modern crypto...
 - This is what is done in practice
 - We will return to this later in the course
- Can construct PRGs from weaker assumptions
 For details, see Chapter 7

Where things stand

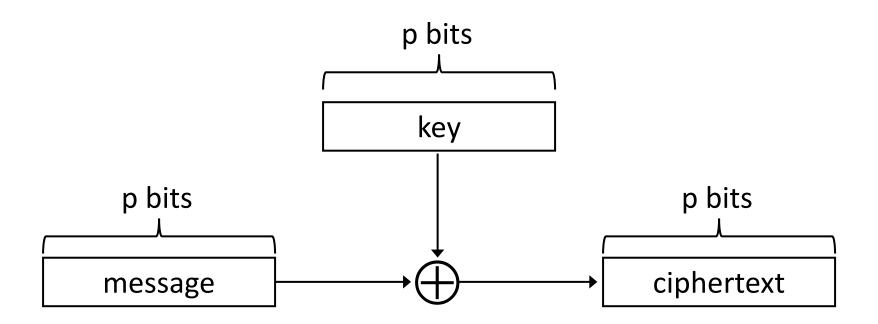
- We saw that there are some inherent limitations if we want perfect secrecy

 In particular, key must be as long as the message
- We defined computational secrecy, a relaxed notion of security

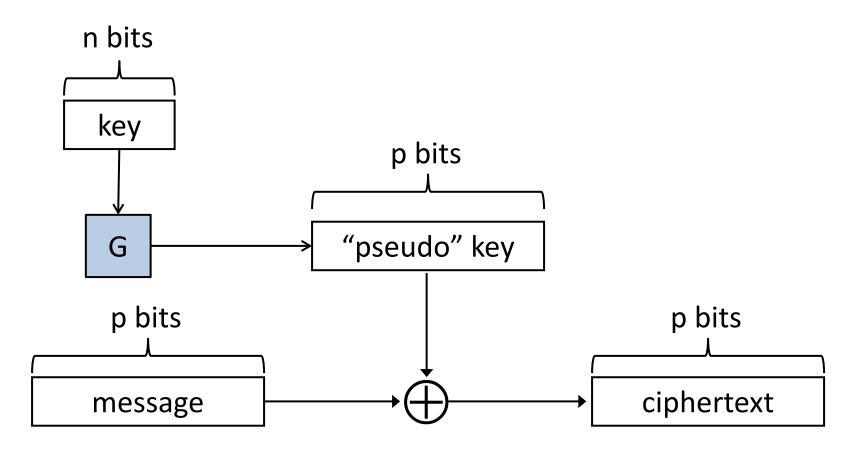
• Can we overcome prior limitations?

Pseudo-one time pad

Recall: one-time pad



"Pseudo" one-time pad



Pseudo one-time pad

- Let G be a deterministic algorithm, with
 |G(k)| = p(|k|)
- Gen(1ⁿ): output uniform n-bit key k

– Security parameter n \Rightarrow message space {0,1}^{p(n)}

- $Enc_k(m)$: output $G(k) \oplus m$
- $\text{Dec}_k(c)$: output $G(k) \oplus c$

Correctness is obvious...

Security of pseudo-OTP?

Would like to be able to prove security

- Based on the *assumption* that G is a PRG

Definitions, proofs, and assumptions

- We've *defined* computational secrecy
- Our goal is to *prove* that the pseudo OTP meets that definition
- We cannot prove this unconditionally
 - Beyond our current techniques...
 - Anyway, security clearly depends on G
- Can prove security based on the assumption that G is a pseudorandom generator

Security theorem

 If G is a pseudorandom generator, then the pseudo one-time pad Π is secure (i.e., computationally indistinguishable)

Stepping back...

- *Proof* that the pseudo OTP is secure...
- ...with some caveats
 - Assuming G is a pseudorandom generator
 - Relative to our definition
- The only ways the scheme can be broken are:
 If a weakness is found in G
 - If the definition isn't sufficiently strong...

Have we gained anything?

 YES: the pseudo-OTP has a key shorter than the message

n bits vs. p(n) bits

- The fact that the parties *internally* generate a p(n)-bit temporary string to encrypt/decrypt is irrelevant
 - The *key* is what the parties share *in advance*
 - Parties do not store the p(n)-bit temporary value