Cryptography – Computational Secrecy *Day 5*

Try Question 1

Python Lab 2

Review

- Let $M = \{0,1\}^n$
- Gen: choose a uniform key $k \in \{0,1\}^n$
- $Enc_k(m) = k \oplus m$
- $Dec_k(c) = k \oplus c$
- Correctness: $Dec_k(Enc_k(m)) = m$

• We defined the notion of perfect secrecy

• The one-time pad achieves perfect secrecy!

• One-time pad is Optimal!

– **Thm.** If (Gen, Enc, Dec) with message space *M* is perfectly secret, then $|\mathcal{K}| \geq |\mathcal{M}|$.

– I.e., we cannot improve the key length

- Drawbacks of One-time Pad
	- Key as long the message
	- Only secure if each key is used to encrypt *once*
	- Trivially broken by a known-plaintext attack
- These limitations are *inherent* for schemes achieving perfect secrecy

Perfect Secrecy

- Drawbacks of Perfect Secrecy
	- Key as long the message
	- Only secure if each key is used to encrypt *once*
- Are we done?

• Do better *by relaxing the definition* – But in a meaningful way…

Computational secrecy

Perfect secrecy (formal)

• Encryption scheme (Gen, Enc, Dec) with message space *M* and ciphertext space *C* is *perfectly secret* if for every distribution over M , every $m \in M$, and every $c \in C$ with $Pr[C=c] > 0$, it holds that

$$
Pr[M = m | C = c] = Pr[M = m].
$$

Perfect secrecy

- Requires that *absolutely no information* about the plaintext is leaked, even to eavesdroppers *with unlimited computational power*
	- Has some inherent drawbacks
	- Seems unnecessarily strong

Computational secrecy

- Would be ok if a scheme leaked information *with tiny probability* to eavesdroppers *with bounded computational resources*
- I.e., we can relax perfect secrecy by
	- Allowing security to "fail" with tiny probability
	- Restricting attention to "efficient" attackers

Tiny probability of failure?

- Say security fails with probability 2⁻⁶⁰
	- Should we be concerned about this?
	- With probability $> 2^{-60}$, the sender and receiver will both be struck by lightning in the next year...
	- $-$ Something that occurs with probability 2⁻⁶⁰/sec is expected to occur once every 100 billion years

Bounded attackers?

- Consider brute-force search of key space; assume one key can be tested per clock cycle
- Desktop computer $\approx 2^{57}$ keys/year
- Supercomputer $\approx 2^{80}$ keys/year
- Supercomputer since Big Bang $\approx 2^{112}$ keys
	- Restricting attention to attackers who can try 2^{112} keys is fine!
- Modern key space: 2^{128} keys or more...

Roadmap

• We will give an alternate (but equivalent) definition of perfect secrecy

– Using a randomized experiment

• That definition has a natural relaxation

- Π = (Gen, Enc, Dec), message space M
- Informally:
	- $-$ Two messages m_0 , m_1 ; one is chosen and encrypted (using unknown k) to give $c \leftarrow \mathsf{Enc}_k(m_b)$
	- Adversary A is given c and tries to determine which message was encrypted
	- $-\Pi$ is perfectly indistinguishable if *no* A can guess correctly with probability *any better than ½*

- Let Π =(Gen, Enc, Dec) be an encryption scheme with message space *M*, and A an adversary
- Define a randomized exp't Priv $K_{A,\Pi}$:
	- 1. A outputs m_0 , $m_1 \in M$
	- 2. k \leftarrow Gen, b \leftarrow {0,1}, c \leftarrow Enc_k(m_b)
	- 3. $b' \leftarrow A(c)$

Challenge ciphertext

Adversary A *succeeds* if b = b', and we say the experiment evaluates to 1 in this case

• Easy to succeed with probability $\frac{1}{2}$...

• Scheme Π is *perfectly indistinguishable* if for all attackers (algorithms) A, it holds that $Pr[PrivK_{A.\Pi} = 1] = \frac{1}{2}$

• Claim: Π is perfectly indistinguishable $\Leftrightarrow \Pi$ is perfectly secret

• I.e., perfect indistinguishability is just an alternate definition of perfect secrecy

Try Question 2

Computational secrecy?

• Idea: relax perfect indistinguishability

- Two approaches
	- Concrete security
	- Asymptotic security

Computational indistinguishability (concrete version)

• Π is (t, ε)-*indistinguishable* if for all attackers A running in time at most t, it holds that $Pr[PrivK_{A,\Pi} = 1] \leq \frac{1}{2} + \varepsilon$

– Relax definition by taking $t < \infty$ and $\epsilon > 0$

Concrete security

• Parameters t, ε are what we ultimately care about in the real world

- Does not lead to a clean theory...
	- Sensitive to exact computational model
	- Π can be (t, ε)-secure for many choices of t, ε
- Would like to have schemes where users can adjust the achieved security as desired

Asymptotic security

- Introduce *security parameter* n
	- For now, think of n as the key length
	- Chosen by honest parties when they generate/share key
		- Allows users to tailor the security level
	- Known by adversary
- Measure running times of all parties, and the success probability of the adversary, as functions of n

Computational indistinguishability (asymptotic)

- Computational indistinguishability:
	- Security may fail with probability *negligible in n*
	- Restrict attention to attackers running in time (at most) *polynomial in n*

Try Question 3