Cryptography – Computational Secrecy Day 5

Try Question 1

Python Lab 2

Review

- Let $\mathcal{M} = \{0, 1\}^n$
- Gen: choose a uniform key $k \in \{0,1\}^n$
- $Enc_k(m) = k \oplus m$
- $Dec_k(c) = k \oplus c$

Correctness:
 Dec_k(Enc_k(m)) = m

• We defined the notion of perfect secrecy

• The one-time pad achieves perfect secrecy!

• One-time pad is Optimal!

- Thm. If (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret, then $|\mathcal{K}| \ge |\mathcal{M}|$.

– I.e., we cannot improve the key length

- Drawbacks of One-time Pad
 - Key as long the message
 - Only secure if each key is used to encrypt once
 - Trivially broken by a known-plaintext attack
- These limitations are *inherent* for schemes achieving perfect secrecy

Perfect Secrecy

- Drawbacks of Perfect Secrecy
 - Key as long the message
 - Only secure if each key is used to encrypt once
- Are we done?

Do better by relaxing the definition
 But in a meaningful way...

Computational secrecy

Perfect secrecy (formal)

Encryption scheme (Gen, Enc, Dec) with message space *M* and ciphertext space *C* is *perfectly secret* if for every distribution over *M*, every m ∈ *M*, and every c ∈ *C* with Pr[C=c] > 0, it holds that

$$Pr[M = m | C = c] = Pr[M = m].$$

Perfect secrecy

- Requires that *absolutely no information* about the plaintext is leaked, even to eavesdroppers with unlimited computational power
 - Has some inherent drawbacks
 - Seems unnecessarily strong

Computational secrecy

- Would be ok if a scheme leaked information with tiny probability to eavesdroppers with bounded computational resources
- I.e., we can relax perfect secrecy by

 Allowing security to "fail" with tiny probability
 - Restricting attention to "efficient" attackers

Tiny probability of failure?

- Say security fails with probability 2⁻⁶⁰
 - Should we be concerned about this?
 - With probability > 2⁻⁶⁰, the sender and receiver will both be struck by lightning in the next year...
 - Something that occurs with probability 2⁻⁶⁰/sec is expected to occur once every 100 billion years

Bounded attackers?

- Consider brute-force search of key space; assume one key can be tested per clock cycle
- Desktop computer $\approx 2^{57}$ keys/year
- Supercomputer $\approx 2^{80}$ keys/year
- Supercomputer since Big Bang $\approx 2^{112}$ keys
 - Restricting attention to attackers who can try 2¹¹² keys is fine!
- Modern key space: 2¹²⁸ keys or more...

Roadmap

 We will give an alternate (but equivalent) definition of perfect secrecy

– Using a randomized experiment

• That definition has a natural relaxation

- Π = (Gen, Enc, Dec), message space \mathcal{M}
- Informally:
 - Two messages m_0 , m_1 ; one is chosen and encrypted (using unknown k) to give $c \leftarrow Enc_k(m_b)$
 - Adversary A is given c and tries to determine which message was encrypted
 - Π is perfectly indistinguishable if *no* A can guess correctly with probability *any better than* $\frac{1}{2}$

- Let Π=(Gen, Enc, Dec) be an encryption scheme with message space *M*, and A an adversary
- Define a randomized exp't $PrivK_{A,\Pi}$:
 - 1. A outputs $m_0, m_1 \in \mathcal{M}$
 - 2. $k \leftarrow \text{Gen}, b \leftarrow \{0,1\}, c \leftarrow \text{Enc}_k(m_b)$
 - 3. b' \leftarrow A(c)

Challenge ciphertext

Adversary A *succeeds* if b = b', and we say the experiment evaluates to 1 in this case

• Easy to succeed with probability 1/2 ...

• Scheme Π is *perfectly indistinguishable* if for <u>all</u> attackers (algorithms) A, it holds that $Pr[PrivK_{A,\Pi} = 1] = \frac{1}{2}$

 Claim: Π is perfectly indistinguishable ⇔ Π is perfectly secret

• I.e., perfect indistinguishability is just an alternate definition of perfect secrecy

Try Question 2

Computational secrecy?

• Idea: relax perfect indistinguishability

- Two approaches
 - Concrete security
 - Asymptotic security

Computational indistinguishability (concrete version)

• Π is (t, ε)-*indistinguishable* if for all attackers A running in time at most t, it holds that Pr[PrivK_{A, Π} = 1] $\leq \frac{1}{2} + \varepsilon$

– Relax definition by taking t < ∞ and ε > 0

Concrete security

• Parameters t, ϵ are what we ultimately care about in the real world

- Does not lead to a clean theory...
 - Sensitive to exact computational model
 - Π can be (t, ϵ)-secure for many choices of t, ϵ
- Would like to have schemes where users can adjust the achieved security as desired

Asymptotic security

- Introduce *security parameter* n
 - For now, think of n as the key length
 - Chosen by honest parties when they generate/share key
 - Allows users to tailor the security level
 - Known by adversary
- Measure running times of all parties, and the success probability of the adversary, as functions of n

Computational indistinguishability (asymptotic)

- Computational indistinguishability:
 - Security may fail with probability *negligible in n*
 - Restrict attention to attackers running in time (at most) *polynomial in n*

Try Question 3