
Cryptography –
Computational Secrecy

Day 5

Try Question 1

Python Lab 2

Review

One-time pad

• Let M = {0,1}n

• Gen: choose a uniform key k  {0,1}n

• Enck(m) = k m

• Deck(c) = k  c

• Correctness:
Deck(Enck(m)) = m

One-time pad

key

n bits

message

n bits

ciphertext

n bits



One-time pad

• We defined the notion of perfect secrecy

• The one-time pad achieves perfect secrecy!

• One-time pad is Optimal!
– Thm. If (Gen, Enc, Dec) with message space M is

perfectly secret, then |K| ≥ |M|.

– I.e., we cannot improve the key length

One-time pad

• Drawbacks of One-time Pad

– Key as long the message

– Only secure if each key is used to encrypt once

– Trivially broken by a known-plaintext attack

• These limitations are inherent for schemes
achieving perfect secrecy

Perfect Secrecy

• Drawbacks of Perfect Secrecy

– Key as long the message

– Only secure if each key is used to encrypt once

• Are we done?

• Do better by relaxing the definition

– But in a meaningful way…

Computational secrecy

Perfect secrecy (formal)

• Encryption scheme (Gen, Enc, Dec) with message
space M and ciphertext space C is perfectly secret if
for every distribution over M, every m M, and
every c  C with Pr[C=c] > 0, it holds that

Pr[M = m | C = c] = Pr[M = m].

Perfect secrecy

• Requires that absolutely no information about
the plaintext is leaked, even to eavesdroppers
with unlimited computational power

– Has some inherent drawbacks

– Seems unnecessarily strong

Computational secrecy

• Would be ok if a scheme leaked information
with tiny probability to eavesdroppers with
bounded computational resources

• I.e., we can relax perfect secrecy by

– Allowing security to “fail” with tiny probability

– Restricting attention to “efficient” attackers

Tiny probability of failure?

• Say security fails with probability 2-60

– Should we be concerned about this?

– With probability > 2-60, the sender and receiver
will both be struck by lightning in the next year…

– Something that occurs with probability 2-60/sec is
expected to occur once every 100 billion years

Bounded attackers?

• Consider brute-force search of key space;
assume one key can be tested per clock cycle

• Desktop computer  257 keys/year

• Supercomputer  280 keys/year

• Supercomputer since Big Bang  2112 keys
– Restricting attention to attackers who can try 2112

keys is fine!

• Modern key space: 2128 keys or more…

Roadmap

• We will give an alternate (but equivalent)
definition of perfect secrecy

– Using a randomized experiment

• That definition has a natural relaxation

Perfect indistinguishability

•  = (Gen, Enc, Dec), message space M

• Informally:

– Two messages m0, m1; one is chosen and
encrypted (using unknown k) to give c  Enck(mb)

– Adversary A is given c and tries to determine
which message was encrypted

–  is perfectly indistinguishable if no A can guess
correctly with probability any better than ½

Perfect indistinguishability

• Let =(Gen, Enc, Dec) be an encryption
scheme with message space M, and A an
adversary

• Define a randomized exp’t PrivKA,:
1. A outputs m0, m1 M

2. k  Gen, b  {0,1}, c  Enck(mb)

3. b’  A(c)

Adversary A succeeds if b = b’, and we say the
experiment evaluates to 1 in this case

Challenge ciphertext

Perfect indistinguishability

• Easy to succeed with probability ½ …

• Scheme  is perfectly indistinguishable if for
all attackers (algorithms) A, it holds that

Pr[PrivKA, = 1] = ½

Perfect indistinguishability

• Claim:  is perfectly indistinguishable  is
perfectly secret

• I.e., perfect indistinguishability is just an
alternate definition of perfect secrecy

Try Question 2

Computational secrecy?

• Idea: relax perfect indistinguishability

• Two approaches

– Concrete security

– Asymptotic security

Computational indistinguishability
(concrete version)

•  is (t, )-indistinguishable if for all attackers A
running in time at most t, it holds that

Pr[PrivKA, = 1] ≤ ½ + 

– Relax definition by taking t <  and  > 0

Concrete security

• Parameters t,  are what we ultimately care
about in the real world

• Does not lead to a clean theory...

– Sensitive to exact computational model

–  can be (t, )-secure for many choices of t, 

• Would like to have schemes where users can
adjust the achieved security as desired

Asymptotic security

• Introduce security parameter n
– For now, think of n as the key length

– Chosen by honest parties when they
generate/share key
• Allows users to tailor the security level

– Known by adversary

• Measure running times of all parties, and the
success probability of the adversary, as
functions of n

Computational indistinguishability
(asymptotic)

• Computational indistinguishability:

– Security may fail with probability negligible in n

– Restrict attention to attackers running in time (at
most) polynomial in n

Try Question 3

