Cryptography – Day 4

One Time Pad and Optimality

Review

Private-key encryption

A *private-key encryption scheme* is defined by a message space *M* and algorithms (Gen, Enc, Dec)

- Gen determines a probability distribution over Key Space.
- Message space has some fixed probability distribution.
- Key Space and Message Space are independent.

Private-key encryption

A *private-key encryption scheme* is defined by a message space *M* and algorithms (Gen, Enc, Dec)

Crypto definitions (generally)

- Security guarantee/goal
	- What we want to achieve
	- Regardless of any *prior* information the attacker has about the plaintext, the ciphertext should leak no *additional* information about the plaintext
- Threat model
	- What (real-world) capabilities the attacker is assumed to have
	- Attacker Observes only one Ciphertext.

Perfect secrecy (formal)

• Encryption scheme (Gen, Enc, Dec) with message space *M* and ciphertext space *C* is *perfectly secret* if for every distribution over M , every $m \in M$, and every $c \in C$ with $Pr[C=c] > 0$, it holds that

$$
Pr[M = m | C = c] = Pr[M = m].
$$

Concept Check

• Consider the shift cipher, and the distribution; $Pr[M = 'hi'] = 0.3,$ $Pr[M = 'no'] = 0.2,$ $Pr[$ M='in']= 0.5

• What is the $Pr[M = 'hi' | C = 'xy']$? $= Pr[C = 'xy' | M = 'hi'] \cdot Pr[M = 'hi']/Pr[C = 'xy']$

Perfectly Secret Encryption

• The shift cipher is not perfectly secret! – At least not for 2-character messages

• How to construct a perfectly secret scheme?

• Patented in 1917 by Vernam

– Recent historical research indicates it was invented (at least) 35 years earlier

• Proven perfectly secret by Shannon (1949)

- Let $M = \{0,1\}^n$
- Gen: choose a uniform key $k \in \{0,1\}^n$
- $Enc_k(m) = k \oplus m$
- $Dec_k(c) = k \oplus c$

• Correctness: $Dec_k(Enc_k(m)) = k \oplus (k \oplus m)$ $=$ (k \oplus k) \oplus m = m

Perfect secrecy of one-time pad

- Note that *any* observed ciphertext can correspond to *any* message (why?)
	- (This is necessary, but not sufficient, for perfect secrecy)
- So, having observed a ciphertext, the attacker cannot conclude for certain which message was sent

Implementing the one-time pad

Key generation

- Read desired number of bytes from /dev/urandom
- Output the result to a file

Encryption

- Plaintext = sequence of ASCII characters
- Key = sequence of hex digits

• Read them; XOR them to get the ciphertext

Decryption

- Reverse encryption
- Read ciphertext and key; XOR them to recover the message

Limitations and *Optimality*

• The one-time pad achieves perfect secrecy!

- One-time pad has historically been used in the real world
	- E.g., "red phone" between DC and Moscow

- Not currently used!
	- Why not?

- Several limitations
	- The key is as long as the message
	- Only secure if each key is used to encrypt a *single* message
		- (Trivially broken by a known-plaintext attack)

 \Rightarrow Parties must share keys of (total) length equal to the (total) length of all the messages they might ever send

Using the same key twice?

• Say $c_1 = k \oplus m_1$ $c_2 = k \oplus m_2$

- Attacker can compute $c_1 \oplus c_2 = (k \oplus m_1) \oplus (k \oplus m_2) = m_1 \oplus m_2$
- This leaks information about m_1 , $m_2!$

- Letters all begin with 01…
- The space character begins with 00…
- XOR of two letters gives 00…
- XOR of letter and space gives 01…
- Easy to identify XOR of letter and space!

Source: http://benborowiec.com/2011/07/23/better-ascii-table/

In pictures

In pictures

 $01010000 = 00100000 \oplus ??$

- Drawbacks
	- Key as long the message
	- Only secure if each key is used to encrypt *once*
	- Trivially broken by a known-plaintext attack
- These limitations are *inherent* for schemes achieving perfect secrecy

Optimality of the one-time pad

- Theorem: if (Gen, Enc, Dec) with message space *M* is perfectly secret, then $|K| \ge |M|$.
- Intuition:
	- Given any ciphertext, try decrypting under every possible key in *K*
	- This gives a list of up to |*K*| possible messages
	- $-$ If $|\mathcal{K}|$ < $|\mathcal{M}|$, some message is not on the list