
Cryptography - Day 3

Defining Security

Review

XOR Operation

• XOR is a binary "exclusive or” operation that
is represented by 

• Suppose 𝐴 = 𝑎1…𝑎𝑛 and 𝐵 = 𝑏1…𝑏𝑛 then

A  B = C where C= 𝑐1…𝑐𝑛 such that

𝑐𝑖 = 0 if 𝑎𝑖 = 𝑏𝑖 and

𝑐𝑖 = 1 if 𝑎𝑖 ≠ 𝑏𝑖.

XOR Operation

• Suppose 𝐴 = 1001 0010 and 𝐵 = 0000 1110

• A  B = 1001 0010

 0000 1110

1001 1100

Byte-wise shift cipher

• M = {strings of bytes}

• Gen: choose uniform byte kK = {0, …, 255}

• Enck(m1…mt): output c1…ct, where
ci := mi  k

• Deck(c1…ct): output m1…mt, where
mi := ci  k

Example

• Say plaintext is “Hi” and key is 1111 0001

• “Hi” = 0x48 69 = 0100 1000 0110 1001

• XOR with “Hi” with the key

• 0100 1000 0110 1001 

1111 0001 1111 0001

= 1011 1001 1001 1000=0xB9 98=unprintable

Byte-wise Vigenère cipher

• The key is a string of bytes

• The plaintext is a string of bytes

• To encrypt, XOR each character in the
plaintext with the next character of the key

– Wrap around in the key as needed

• Decryption just reverses the process

Example

• Say plaintext is “Hello!” and key is 0xA1 2F

• “Hello!” = 0x48 65 6C 6C 6F 21

• XOR with 0xA1 2F A1 2F A1 2F

• 0x48  0xA1

– 0100 1000  1010 0001 = 1110 1001 = 0xE9

• Ciphertext: 0xE9 4A CD 43 CE 0E

Attacking the (variant) Vigenère cipher

• Two steps:

– Determine the key length

– Determine each byte of the key

Using plaintext letter frequencies

Useful observations

• Only 128 valid ASCII chars (128 bytes invalid)

• 0x20-0x7E printable

• 0x41-0x7a includes upper/lowercase letters

– Uppercase letters begin with 0x4 or 0x5

– Lowercase letters begin with 0x6 or 0x7

Determining the key length

• Let pi (for 0 ≤ i ≤ 255) be the frequency of byte
i in general English text

– I.e., pi =0 for i < 32 or i > 127

– I.e., p97 = frequency of ‘a’

– The distribution is far from uniform

Determining the key length

• If the key length is N, then every Nth character
of the plaintext is encrypted using the same
“shift”

– If we take every Nth character and calculate
frequencies, we should get the pi’s in permuted
order

– If we take every Mth character (M not a multiple of
N) and calculate frequencies, we should get
something close to uniform

Determining the key length

• Assume length is k

• For key length k, tabulate q0, …, q255 and
compute  qi

2

– If close to uniform,  qi
2  256 · (1/256)2 = 1/256

– If a permutation of pi, then  qi
2   pi

2

• Could compute  pi
2 (but somewhat difficult)

• Key point: will be much larger than 1/256

• Compute  qi
2 for each possible key length,

and look for maximum value

Determining the ith byte of the key

• Assume the key length N is known

• Look at every Nth character of the ciphertext,
starting with the ith character
– Call this the ith ciphertext “stream”

– Note that all bytes in this stream were generated
by XORing plaintext with the same byte of the key

• Try decrypting the stream using every possible
byte value B
– Get a candidate plaintext stream for each value

Determining the ith byte of the key

• Could use {pi} as before, but not easy to find

• When the guess B is correct:
– Frequencies of lowercase letters (as a fraction of

all lowercase letters) should be close to known
English-letter frequencies
• Tabulate observed letter frequencies q’0, …, q’25 (as

fraction of all lowercase letters)

• Should find  q’i p’i   p’i
2  0.065, where p’i

corresponds to English-letter frequencies

• In practice, take B that maximizes  q’i p’i

Defining secure encryption

Crypto definitions (generally)

• Security guarantee/goal

– What we want to achieve and/or what we want to
prevent the attacker from achieving

• Threat model

– What (real-world) capabilities the attacker is
assumed to have

Recall

• A private-key encryption scheme is defined by a
message space M and algorithms (Gen, Enc, Dec):

– Gen (key-generation algorithm): generates k

– Enc (encryption algorithm): takes key k and message
m M as input; outputs ciphertext c

c Enck(m)

– Dec (decryption algorithm): takes key k and
ciphertext c as input; outputs m.

m := Deck(c)

Private-key encryption

k k
c

key

m
c := Enck(m) message/plaintext

encryption

ciphertext

m := Deck(c)

decryption

key

Threat models for encryption

• Ciphertext-only attack - obtain only ciphertext

• Known-plaintext attack – obtain ciphertext with
some knowledge of the message

• Chosen-plaintext attack - obtain encryptions of
chosen messages

• Chosen-ciphertext attack – obtain decryptions of
chosen ciphertext

Goal of secure encryption?

• How would you define what it means for
encryption scheme (Gen, Enc, Dec) over
message space M to be secure?

– Against a (single) ciphertext-only attack

Secure encryption?

• “Impossible for the attacker to learn the
plaintext from the ciphertext”

– What if the attacker learns 90% of the plaintext?

Secure encryption?

• “Impossible for the attacker to learn any
character of the plaintext from the ciphertext”

– What if the attacker is able to learn (other)
partial information about the plaintext?

• E.g., salary is greater than $75K

