Cryptography - Day 3

Defining Security

Review

XOR Operation

• XOR is a binary "exclusive or" operation that is represented by ⊕

• Suppose $A = a_1 \dots a_n$ and $B = b_1 \dots b_n$ then $A \oplus B = C$ where $C = c_1 \dots c_n$ such that $c_i = 0$ if $a_i = b_i$ and $c_i = 1$ if $a_i \neq b_i$.

XOR Operation

• Suppose *A* = 1001 0010 and *B* = 0000 1110

A ⊕ B = 1001 0010
 ⊕ 0000 1110
 1001 1100

Byte-wise shift cipher

- $\mathcal{M} = \{ \text{strings of bytes} \}$
- Gen: choose uniform byte $k \in \mathcal{K} = \{0, ..., 255\}$
- $Enc_k(m_1...m_t)$: output $c_1...c_t$, where $c_i := m_i \oplus k$
- $Dec_k(c_1...c_t)$: output $m_1...m_t$, where $m_i := c_i \oplus k$

Example

- Say plaintext is "Hi" and key is 1111 0001
- "Hi" = 0x48 69 = 0100 1000 0110 1001
- XOR with "Hi" with the key
- 0100 1000 0110 1001 ⊕
 1111 0001 1111 0001
 = 1011 1001 1001 1000=0xB9 98=unprintable

Byte-wise Vigenère cipher

- The key is a string of bytes
- The plaintext is a string of bytes
- To encrypt, XOR each character in the plaintext with the next character of the key

– Wrap around in the key as needed

• Decryption just reverses the process

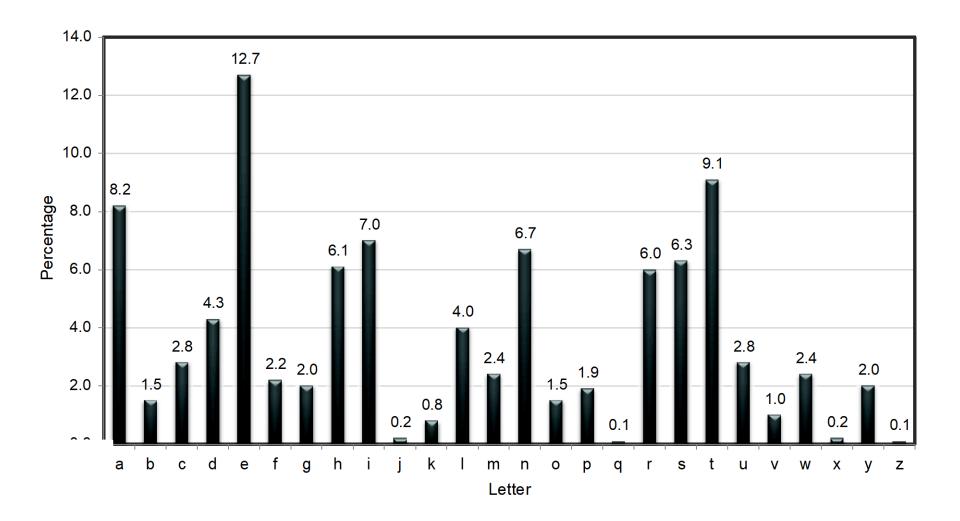
Example

- Say plaintext is "Hello!" and key is 0xA1 2F
- "Hello!" = 0x48 65 6C 6C 6F 21
- XOR with 0xA1 2F A1 2F A1 2F
- 0x48 ⊕ 0xA1
 - $-0100\ 1000 \oplus 1010\ 0001 = 1110\ 1001 = 0xE9$
- Ciphertext: 0xE9 4A CD 43 CE 0E

Attacking the (variant) Vigenère cipher

- Two steps:
 - Determine the key length
 - Determine each byte of the key

Using plaintext letter frequencies



Useful observations

- Only 128 valid ASCII chars (128 bytes invalid)
- 0x20-0x7E printable
- 0x41-0x7a includes upper/lowercase letters
 - Uppercase letters begin with 0x4 or 0x5
 - Lowercase letters begin with 0x6 or 0x7

Determining the key length

- Let p_i (for 0 ≤ i ≤ 255) be the frequency of byte i in general English text
 - I.e., p_i =0 for i < 32 or i > 127
 - I.e., p_{97} = frequency of 'a'
 - The distribution is far from uniform

Determining the key length

- If the key length is N, then every Nth character of the plaintext is encrypted using the same "shift"
 - If we take every Nth character and calculate frequencies, we should get the p_i's in permuted order
 - If we take every Mth character (M not a multiple of N) and calculate frequencies, we should get something close to uniform

Determining the key length

- Assume length is k
- For key length k, tabulate ${\rm q_0},$..., ${\rm q_{255}}$ and compute Σ ${\rm q_i}^2$
 - If close to uniform, $\Sigma q_i^2 \approx 256 \cdot (1/256)^2 = 1/256$
 - If a permutation of p_i , then $\Sigma q_i^2 \approx \Sigma p_i^2$
 - Could compute Σp_i^2 (but somewhat difficult)
 - Key point: will be much larger than 1/256
- Compute $\Sigma~{\rm q_i}^2$ for each possible key length, and look for maximum value

Determining the ith byte of the key

- Assume the key length N is known
- Look at every Nth character of the ciphertext, starting with the ith character
 - Call this the ith ciphertext "stream"
 - Note that all bytes in this stream were generated by XORing plaintext with the same byte of the key
- Try decrypting the stream using every possible byte value B

- Get a candidate plaintext stream for each value

Determining the ith byte of the key

- Could use {p_i} as before, but not easy to find
- When the guess B is correct:
 - Frequencies of lowercase letters (as a fraction of all lowercase letters) should be close to known English-letter frequencies
 - Tabulate observed letter frequencies q'₀, ..., q'₂₅ (as fraction of all lowercase letters)
 - Should find Σ q'_i p'_i ≈ Σ p'_i² ≈ 0.065, where p'_i corresponds to English-letter frequencies
 - In practice, take B that maximizes $\Sigma q'_i p'_i$

Defining secure encryption

Crypto definitions (generally)

- Security guarantee/goal
 - What we want to achieve and/or what we want to prevent the attacker from achieving

- Threat model
 - What (real-world) capabilities the attacker is assumed to have

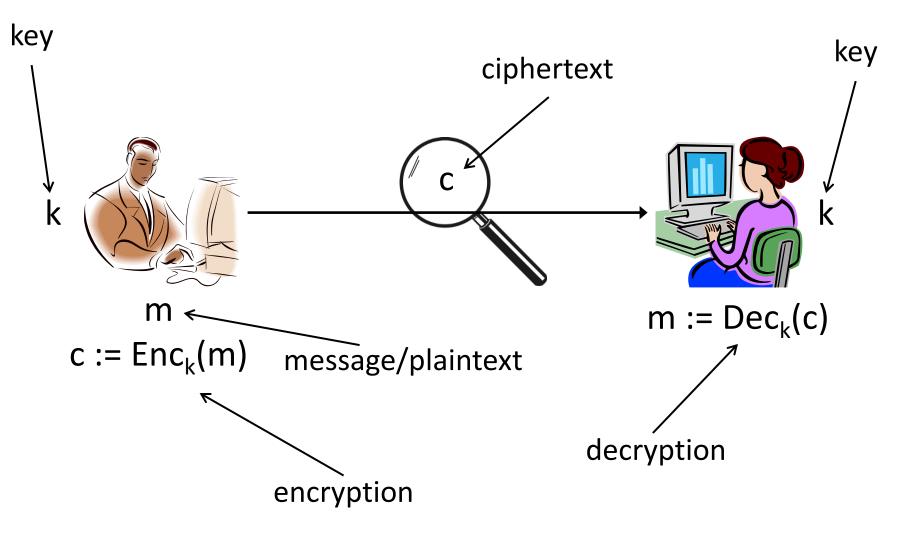
Recall

- A *private-key encryption scheme* is defined by a message space *M* and algorithms (Gen, Enc, Dec):
 - Gen (key-generation algorithm): generates k
 - Enc (encryption algorithm): takes key k and message $m \in \mathcal{M}$ as input; outputs ciphertext c

 $c \leftarrow \text{Enc}_k(m)$

 Dec (decryption algorithm): takes key k and ciphertext c as input; outputs m.
 m := Dec_k(c)

Private-key encryption



Threat models for encryption

- Ciphertext-only attack obtain only ciphertext
- Known-plaintext attack obtain ciphertext with some knowledge of the message
- Chosen-plaintext attack obtain encryptions of chosen messages
- Chosen-ciphertext attack obtain decryptions of chosen ciphertext

Goal of secure encryption?

 How would you define what it means for encryption scheme (Gen, Enc, Dec) over message space *M* to be secure?

- Against a (single) ciphertext-only attack

Secure encryption?

• "Impossible for the attacker to learn the plaintext from the ciphertext"

- What if the attacker learns 90% of the plaintext?

Secure encryption?

- "Impossible for the attacker to learn any character of the plaintext from the ciphertext"
 - What if the attacker is able to learn (other) partial information about the plaintext?
 - E.g., salary is greater than \$75K