
Cryptography - Day 2

Implementations and Python

Review

Shift cipher

• M = {English word with lower case letters}

• Gen: choose uniform kK = {0, …, 25}

• Enck(m1…mt): output c1…ct, where
ci =[mi + k mod26]

• Deck(c1…ct): output m1…mt, where
mi =[ci - k mod26]

• Is this cipher secure? No -- only 26 possible
keys!
– Given a ciphertext, try decrypting with every

possible key

Vigenere cipher

• M = {English word with lower case letters}

• Gen: choose uniform word k=k1…krM

• Enck(m1…mt): output c1…ct, where
ci = [mi +kj mod26]

• Deck(c1…ct): output m1…mt, where
mi = [ci -kj mod26]

• Is this cipher secure? No – We can find the
key length and the shift of each key!

So far…

• “Heuristic” constructions; construct, break,
repeat, …

• Can we prove that some encryption scheme
is secure?

• First need to define what we mean by “secure”
in the first place…

Core principles of modern crypto

• Formal definitions
– Precise, mathematical model and definition of

what security means

• Assumptions
– Clearly stated and unambiguous

• Proofs of security
– Move away from design-break-patch

Try Question 1

Quick Python!

First programming assignment

• Implement the Vigenère cipher. Then encrypt
the message provided online.

• Will be posted after class.

Hexidecimal, ASCII, and XOR

Hexadecimal (base 16)

Hex Bits
(“nibble”)

Decimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

Hex Bits
(“nibble”)

Decimal

8 1000 8

9 1001 9

A 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F 1111 15

Hexadecimal (base 16)

• 0x10

– 0x10 = 16*1 + 0 = 16

– 0x10 = 0001 0000

• 0xAF

Hexadecimal (base 16)

• 0x10

– 0x10 = 16*1 + 0 = 16

– 0x10 = 0001 0000

• 0xAF

– 0xAF = 16*A + F = 16*10 + 15 = 175

– 0xAF = 1010 1111

ASCII

• Characters (often) represented in ASCII

– 1 byte/char = 2 hex digits/char

Source: http://benborowiec.com/2011/07/23/better-ascii-table/

ASCII

• ‘1’ = 0x31 = 0011 0001

• ‘F’ = 0x46 = 0100 0110

• Note that writing 0x00 to a file is different
from writing “0x00” to a file

– 0x00 = 0000 0000 (1 byte)

– “0x00” = 0x30 78 30 30
= 0011 0000 0111 1000… (4 bytes)

Day 2 - Worksheet

• Try Question 2 and Question 3 from the
worksheet

Useful observations

• Only 128 valid ASCII chars (128 bytes invalid)

• 0x20-0x7E printable

• 0x41-0x7a includes upper/lowercase letters

– Uppercase letters begin with 0x4 or 0x5

– Lowercase letters begin with 0x6 or 0x7

XOR Operation

• XOR is a binary "exclusive or” operation that
is represented by 

• XOR is true if and only if the arguments differ

• Example: Evaluate the following.

– 0100 1011  1010 0001

– 0100 1000  0100 1000

Property of XOR

• Lemma. Suppose that b and b’ are binary
numbers such that b = b’. Then b  b’ = e
where e is the binary representation of zero.

Byte-wise shift cipher

• Work with an alphabet of bytes rather than
(English, lowercase) letters

– Works natively for arbitrary data!

• Use XOR instead of modular addition

– Essential properties still hold

Byte-wise shift cipher

• M = {strings of bytes}

• Gen: choose uniform byte kK = {0, …, 255}

• Enck(m1…mt): output c1…ct, where
ci := mi  k

• Deck(c1…ct): output m1…mt, where
mi := ci  k

Example

• Say plaintext is “Hi” and key is
1010 0001 1111 0001

• “Hi” = 0x48 69 = 0100 1000 0110 1001

• XOR with “Hi” with the key

• 0100 1000 0110 1001 
1010 0001 1111 0001

= 1110 1001 1001 1000

Example

• Say plaintext is “Hi” and key is

1010 0001 1111 0001

• Ciphertext: 1110 1001 1001 1000 = 0xE9 98

Byte-wise Vigenère cipher

• The key is a string of bytes

• The plaintext is a string of bytes

• To encrypt, XOR each character in the
plaintext with the next character of the key

– Wrap around in the key as needed

• Decryption just reverses the process

Example

• Say plaintext is “Hello!” and key is 0xA1 2F

• “Hello!” = 0x48 65 6C 6C 6F 21

• XOR with 0xA1 2F A1 2F A1 2F

• 0x48  0xA1

– 0100 1000  1010 0001 = 1110 1001 = 0xE9

• Ciphertext: 0xE9 4A CD 43 CE 0E

Attacking the (variant) Vigenère cipher

• Two steps:

– Determine the key length

– Determine each byte of the key

• Same principles as before…

Using plaintext letter frequencies

Determining the key length

• Let pi (for 0 ≤ i ≤ 255) be the frequency of byte
i in general English text

– I.e., pi =0 for i < 32 or i > 127

– I.e., p97 = frequency of ‘a’

– The distribution is far from uniform

Determining the key length

• If the key length is N, then every Nth character
of the plaintext is encrypted using the same
“shift”

– If we take every Nth character and calculate
frequencies, we should get the pi’s in permuted
order

– If we take every Mth character (M not a multiple of
N) and calculate frequencies, we should get
something close to uniform

Determining the key length

• How to distinguish these two?
• For some candidate key length, tabulate q0, …,

q255 and compute  qi
2

– If close to uniform,  qi
2  256 · (1/256)2 = 1/256

– If a permutation of pi, then  qi
2   pi

2

• Could compute  pi
2 (but somewhat difficult)

• Key point: will be much larger than 1/256

• Compute  qi
2 for each possible key length, and

look for maximum value
– Correct key length should yield a large value for every

stream

Determining the ith byte of the key

• Assume the key length N is known

• Look at every Nth character of the ciphertext,
starting with the ith character
– Call this the ith ciphertext “stream”

– Note that all bytes in this stream were generated
by XORing plaintext with the same byte of the key

• Try decrypting the stream using every possible
byte value B
– Get a candidate plaintext stream for each value

Determining the ith byte of the key

• Could use {pi} as before, but not easy to find
• When the guess B is correct:

– All bytes in the plaintext stream will be between 32
and 127

– Frequencies of lowercase letters (as a fraction of all
lowercase letters) should be close to known English-
letter frequencies
• Tabulate observed letter frequencies q’0, …, q’25 (as fraction

of all lowercase letters)
• Should find  q’i p’i   p’i

2  0.065, where p’i corresponds to
English-letter frequencies

• In practice, take B that maximizes  q’i p’i

