Directions

- 1. Complete the following questions.
- 1. Which of the following is NOT a group?
 - (a) The integers under addition.
 - (b) The set $\{0, 1, 2, \dots, 27\}$ under multiplication modulo 28.
 - (c) The set $\{1, 3, 7, 9\}$ under multiplication modulo 10.
 - (d) The set $\{0, 1, 2, \dots, 27\}$ under addition modulo 28.
- 2. The elements of \mathbb{Z}_{15}^* are $\{1, 2, 4, 7, 8, 11, 13, 14\}$. Define $f_3(x) = [x^3 \mod 15]$. What is the result of applying f_3 to the elements of \mathbb{Z}_{15}^* , in the order just presented?
 - (a) $\{1, 8, 4, 7, 8, 11, 13, 14\}$
 - (b) $\{1, 8, 4, 13, 2, 11, 7, 14\}$
 - (c) $\{1, 8, 4, 8, 4, 8, 2, 14\}$
 - (d) $\{1, 8, 4, 2, 13, 11, 7, 14\}$
- 3. Which of the following is a generator of \mathbb{Z}_{7}^{*} ?
 - (a) 2
 - (b) 3
 - (c) 5
 - (d) 6
- 4. Which of the following is the multiplicative inverse of 10 modulo 15?
 - (a) There is none
 - (b) 2
 - (c) 5
 - (d) 10

- 5. Let G be a cyclic group of order q and with generator g. Based only on the assumption that the discrete-logarithm problem is hard for this group, which of the following problems is hard?
 - (a) Given a uniform $x \in \mathbb{Z}_q$, find y such that $g^x = y$.
 - (b) Find x, y such that $g^x = y$
 - (c) Given a uniform $y \in G$, find x such that $g^x = y$.
 - (d) Given uniform $x \in \mathbb{Z}_q$ and uniform $y \in G$, compute $y^x \cdot g$.
- 6. Assume "plain RSA" encryption is used with public key (N = 33, e = 3). What is the encryption of the message m = 2?
 - (a) 8
 - (b) 7
 - (c) 32
 - (d) 10
- 7. What is the order of \mathbb{Z}_{1261}^* ?

8. How many generators does the group \mathbb{Z}_{13}^+ contain? Explain your solution.

9. Compute $3^{2020} \mod 35$.

10. \mathbb{Z}_{23}^* is a cyclic group with generator 5. Compute $DH_5(3, 10)$.

11. Suppose G is a cyclic group of order n. Assume that for an integer m between 1 and n the order of g^m is $n/\gcd(m, n)$ where g is a generator. Show that there are exactly $\phi(n)$ generators.

12. Assume El Gamal encryption, where the group being used is \mathbb{Z}_{47}^* with generator 5. (This group has order 46, which is not prime. But El Gamal encryption can be defined in any cyclic group.) Assume the public key contains h = 10. Say an attacker sees a ciphertext (41, 18) that is the encryption of some unknown message m. What is an encryption of [5 $m \mod 47$]?

13. In class we showed the following corollary:

Take N > 1 and $a \in \mathbb{Z}_N^*$. Then $a^{\phi(N)} = 1 \mod N$.

This implies that if N = pq where p, q are relatively prime and $ed = 1 \mod \phi(N)$ then for any $x \in \mathbb{Z}_N^*$ we have $(x^e)^d = x \mod N$. Show that this holds for all $x \in \mathbb{Z}_N$. (Hint: use the Chinese Remainder Theorem) 14. True or False: Suppose π is the textbook RSA encryption scheme with parameters (N, e, d) where N is the product of two n-bit primes, along with integers e, d satisfying $ed = 1 \mod(N)$. If the message m does not lie Z_N^* , can $Enc_{pk}(m)$ be decrypted given that you know the private key? Explain your answer.