Directions

- 1. Complete the following questions.
- 1. Using the English-language shift cipher which of the following plaintexts could correspond to ciphertext "qzhpd"
 - (a) "pygoc"
 - (b) "bad"
 - (c) "lucky"
 - (d) "tough"
- 2. Which of the following encryption schemes are perfectly secret ?
 - (a) shift cipher
 - (b) vigenere cipher
 - (c) Psuedo-one time pad
 - (d) one time pad
- 3. Consider the vigenere cipher where the key space and message space are all single english words of length 3 composed of only lowercase letters. What is the probability that key k is equal to 'abc'?
 - (a) $(1/25)^3$
 - (b) 1/5
 - (c) 1/26
 - (d) None of the above
- 4. Which of the following is NOT a drawback of the one-time pad?
 - (a) A given key can only be used to encrypt one message
 - (b) The key is as long as the message
 - (c) The key must be chosen uniformly
 - (d) The scheme is insecure against chosen-plaintext attacks

- 5. Which of the following is a negligible function?
 - (a) f(n) = 1/n(b) f(n) = 1/2
 - (c) $f(n) = 1/2^n$
 - (d) $f(n) = n/2^n$
- 6. Define G by G(x) = x | x. (G maps inputs of length n to outputs of length 2n.) Which of the following algorithms A distinguishes the output of G from uniform?
 - (a) An input y of length 2n, output 1 if the first bit of y is 1
 - (b) An input y of length 2n, output 1 if the last bit of y is 1
 - (c) An input y of length 2n, output 1 if the first and last bits of y are equal
 - (d) An input y of length 2n, output 1 if the first bit of y is equal to the (n+1)st bit of y
- 7. Consider the one-time pad over the message space of 6-bit strings, where Pr[M=001000] = 0.15, Pr[M=110011] = 0.25, and Pr[M=11111] = 0.6. Note that the key space consists of any 6 bit string. What is Pr[C=000000]?

8. Prove or refute: There exists a perfectly secret encryption scheme Π with message space M and key space K such that |M| > |K|.

9. Prove or refute: If a single character is encrypted, then the shift cipher is perfectly secret.

MATH 3540

10. Let G be a pseudorandom generator and define $G_0(s)$ to be the output of G truncated to n bits (where s is of length n). Prove that the function $F_k(x) = G_0(k) \bigoplus x$ is not a pseudorandom function.

11. Show that the pseudo-OTP is not CPA secure.

- 12. Let $\pi = (Gen; Enc; Dec)$ be an encryption scheme defined as follows where F is a pseudorandom function:
 - (a) Gen: On input 1^n , Gen ouputs a key $k \in \{0,1\}^n$ choosen uniformly.
 - (b) Enc: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^n$, choose a string $r \in \{0,1\}^n$ uniformaly and output the ciphertext

$$c = < r, F_k(r) \bigoplus m > .$$

(c) Dec: on input a key $k \in \{0,1\}^n$ and a ciphertext c = jr,s;, output the message

$$m=F_k(r)\bigoplus s.$$

Show correctness of π .

- 13. Let (Gen; Enc; Dec) be an encryption scheme defined as follows:
 - (a) Gen outputs a key k for a keyed function F.
 - (b) Upon input $m \in \{0,1\}^{n/2}$ and key k, algorithm Enc chooses a random string $r \leftarrow \{0,1\}^{n/2}$ of length n/2 and computes $c = F_k(r|m)$.

Show the following:

- (a) Define the decryption algorithm for π .
- (b) If F is a random permutation show π is CPA secure.
- (c) If F is a psuedorandom permutation show π is CPA secure.