Directions

- 1. Complete two out of three questions from 1-3 then complete problems 4 and 5.
- 1. Let $\phi(n)$ be the Euler phi function.
 - (a) Let p be a prime and $e \ge 1$ an integer. Show that

$$\phi(p^e) = p^{e-1}(p-1).$$

- (b) Let p, q be relatively prime. Show that $\phi(pq) = \phi(p)\phi(q)$.
- (c) Let $N = \prod_i p_i^{e_i}$, where the $\{p_i\}$ are distinct primes and $e_i \ge 1$. Show $\phi(N) = \prod_i p_i^{e_i-1}(p_i-1)$

•

2. Let N = pq where p and q are relatively prime. Show that

 $\mathbb{Z}_N^* \cong \mathbb{Z}_p^* \times \mathbb{Z}_q^*$

3. In class we showed the following corollary:

Take N > 1 and $a \in \mathbb{Z}_N^*$. Then $a^{\phi(N)} = 1 \mod N$.

This implies that if N = pq where p, q are relatively prime and $ed = 1 \mod \phi(N)$ then for any $x \in \mathbb{Z}_N^*$ we have $(x^e)^d = x \mod N$. Show that this holds for all $x \in \mathbb{Z}_N$. (Hint: use the Chinese Remainder Theorem)

4. What is the order of \mathbb{Z}_{806}^* ?

5. Given that 5 is an element of \mathbb{Z}_{79}^* , compute [5¹²⁰ mod $\phi(79)$].