Directions

- 1. Complete the following questions.
- 1. Let F be a pseudorandom function with 128-bit key and 256-bit block length. Which of the following functions G are necessarily pseudorandom generators?
 - (a) $G(x) = F_x(0...0) || F_x(0...0)$, where x is a 128-bit input.
 - (b) $G(x) = F_x(0...0)$, where x is a 128-bit input.
 - (c) $G(x) = F_{0...0}(x) ||F_{1...1}(x)$, where x is a 256-bit input
 - (d) $G(x) = F_x(0...0) || F_x(1...1)$, where x is a 128-bit input.
- 2. Let G be a pseudorandom generator and define $G_0(s)$ to be the output of G truncated to n bits (where s is of length n). Prove that the function $F_k(x) = G_0(k) \bigoplus x$ is not a pseudorandom function.

3. Prove that any pseudorandom permutation is also a pseudorandom function.

- 4. Let (*Gen*; *Enc*; *Dec*) be an encryption scheme defined as follows:
 - (a) Gen outputs a key k for a pseudorandom permutation F.
 - (b) Upon input $m \in \{0,1\}^{n/2}$ and key k, algorithm Enc chooses a random string $r \leftarrow \{0,1\}^{n/2}$ of length n/2 and computes $c = F_k(r|m)$. Show how to decrypt, and prove that this scheme is CPA-secure.